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1 Introduction

The aim of this paper is to present some methods of constructing Lorentzian
4-metrics from holomorphic 4-metrics and to discuss the construction of cer-
tain real solutions of Einstein’s equations from holomorphic 4-metrics. The
early work, by Newman, Penrose and Plebänski on holomorphic half-flat 4-
metrics, [1-3], was followed quickly by many developments, [4-6], including
significant results about real 4-metrics of Riemannian and neutral (Kleinian
or ultrahyperbolic) signatures, [7-9]. However results about real metrics of
Lorentzian signature, satisfying Einstein’s equations, have been more lim-
ited. The twistorial approach towards this latter problem is reviewed in
references [10, 11] and examples of the work of Newman and his collabora-
tors are contained in references [12] and [13]. Isolated results on combining
self-dual and anti self-dual solutions to obtain Ricci flat and real metrics
by using Plebański’s formalism are contained in references [14-18]. More
references to these these various lines of research can be found in a recent
review, [19]. In this paper the general formalism used by Plebański and his
collaborators is employed to obtain further results on constructing real solu-
tions of Einstein’s equations from holomorphic metrics. Real 4-geometries
are constructed from the non-linear superposition of holomorphic geometries
and their complex conjugates. Earlier work, on combining self-dual and anti
self-dual half flat holomorphic metrics, [14], to form real and complex solu-
tions of Einstein’s vacuum field equations, is extended to include solutions
with pure radiation energy-momentum tensors. Real p−forms, which are
naturally defined by holomorphic half-flat metrics, are used to construct real
Lorentzian 4-metrics on real 4-manifolds.

The structure of the paper is as follows. In the second section the basic
formalism is introduced. This includes coordinate and frame presentations
of metrics, and the Cartan structure equations, on a holomorphic 4-manifold
M. The two component spinor formalism is also introduced. In the third
section certain one (complex) parameter families of holomorphic 4- metrics
on M are discussed. When the parameters are unity the metrics in the fam-
ilies are half-flat. Examples of these metrics are given which correspond to
solutions of the holomorphic Einstein equations with pure radiation energy-
momentum tensors. They are generalizations of known half-flat solutions,
see e.g. [14]. The formalism used here is adapted from one introduced by
Plebański in his discussion of half-flat metrics, [3]. The fourth section of the
paper deals with methods of combining, locally on M, holomorphic 4-metrics
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from section three, and deriving from such superpositions real Lorentzian
metrics on a real four dimensional sub-manifold, N, of M. Classes of vac-
uum solutions and solutions with pure radiation energy-momentum tensors
are constructed; in particular real Lorentzian 4-metrics in the Kundt class
of algebraically special metrics are reobtained within this context. These
results generalize previous calculations contained in reference [14]. It is also
shown in this section that the 8-metric, corresponding to the real part of the
holomorphic 4-metrics of this section, can be pulled back to a Lorentzian
metric on a real four sub-manifold, N, of the complex 4-manifold. Although
the one parameter family that includes anti-self dual metrics is used here,
it is clear that the family that includes self-dual metrics could be employed
in a similar manner. The fifth section of the paper contains an investiga-
tion of real p−forms on M, where 2≤ p ≤ 8, which are constructed from
the co-frame for an anti self-dual metric. Again, the latter are used for
the sake of definiteness, frames for self-dual metrics could equally well be
used. The method of construction of these forms ensures that they have
vanishing exterior covariant derivative with respect to a so(1,3)-valued con-
nection. This connection is constructed by adding the anti-self dual part of
the connection of the anti-self dual metric to its complex conjugate. The real
p−forms, which arise naturally, satisfy equations on M which are formally
analogous to the equations satisfied by the 1−forms of a Cartan frame for
a real Ricci-flat Lorentzian 4-metric. By considering the pull-backs of these
equations and differential forms to a real four dimensional submanifold, N,
of M, real geometrical structures are constructed on N. Only the case where
p = 3 is investigated in detail in this section although a brief discussion of the
p = 2 case is given in an appendix. When p = 3, a class of real Lorentzian
4-metrics which encode, in part at least, the properties of the holomorphic
anti-self dual metric can be calculated relatively simply. Lorentzian metrics
are constructed from the 3−forms for broad classes of embeddings of real
4-dimensional submanifolds, in contrast to the results of previous sections.
All these metrics linearize to real solutions of the linearized vacuum Ein-
stein equations. However, the aim of dealing with Einstein’s equations for
Lorentzian 4-metrics, by using this construction is incompletely realized. To
achieve this geometrical conditions on the embedding maps which ensure that
the Lorentzian 4-metrics are solutions of Einstein’s equations would have to
be formulated. Nevertheless, this approach to deriving Lorentzian 4-metrics
extends both the other approaches and the “real slices” approach [20, 21], to
constructing Lorentzian 4-metrics from holomorphic metrics.
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The emphasis in much of this paper is placed on holomorphic metrics,
[34, 22-28]. These are particularly interesting because holomorphic half-flat
metrics can be obtained by using Penrose’s non-linear graviton twistor con-
struction. However it should be noted that essential features of the method
of construction of Lorentzian 4-metrics given in sections four and five do
not necessarily require analyticity and holomorphic metrics. For instance,
one can take Plebański’s approach to half-flat metrics, or a generalization,
and carry it out on a real 4-manifold N. Plebański’s equation, or its gener-
alization, is viewed, in this particular context, as a non-linear extension of
the complex scalar wave equation in Minkowski space-time. Its solutions
are then viewed as non-linear versions of Penrose’s complex Hertz potentials
for spin two zero rest-mass fields in Minkowski space-time. (All solutions
of the vacuum Einstein equations, linearized about the Minkowski solution,
can be generated by such potentials [33].) Now, the “metrics”, half-flat or
otherwise, constructed in this way are not real metrics on N but formally
similar complex objects determined by complex, but not necessarily ana-
lytic, solutions of the complex field equation. When the constructions of
the type discussed in sections four and five are carried out within this con-
text the real Lorentzian 4-metrics obtained can be regarded as having been
constructed by “superposing” the complex “metrics” and their complex con-
jugates. Hence, Lorentzian metrics obtained in this way, which also satisfy
the vacuum equations, can be regarded as having being constructed by an
extension of the method of constructing solutions of the linearized Einstein
vacuum field equations from complex Hertz potentials and their complex
conjugates.

In this paper all ordinary lower case Latin indices a, b, c, i, j, k and bold
lower case Latin indices a, b, c range and sum from 1 to 4; bold lower case
Latin indices, i, j, k from 1 to 3; upper-case Latin indices from 0 to 1 and
Greek indices from 1 to 8. Complex conjugates (c.c.) are denoted with a
bar. Geometrical considerations are essentially local.

2 Holomorphic 4-metrics

Let M be a complex manifold with dim � M equal to four, and let g be a
holomorphic metric on M, with line element given in complex coordinates zi
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by
ds2 = gijdz

i ⊗ dzj, (1)

with ∂gij/∂z̄
k = 0, (see also [34], and references [22-28, 30] on complex,

holomorphic and hyper-Kahler structures).
It is convenient here to present this metric geometry in terms of the holo-

morphic Cartan structure equations, using conventions which will be used
later when real Lorentzian metrics are considered. These conventions are
naturally adapted to two component spinor and anti self-dual formulations,
[32].

Let χa be a basis of holomorphic 1-forms, a Cartan co-frame for g, with
dual basis of vector fields ea, so that the line element for g is given by

ds2 = ηabχ
a ⊗ χb (2)

where

ηab =

[

0 εAB

−εAB 0

]

, and

εAB =

[

0 1
−1 0

]

. (3)

The complex volume element is given by

V = iχ1 ∧ χ2 ∧ χ3 ∧ χ4. (4)

The real and imaginary parts, h and k, of the holomorphic metric g =
h + ik are each real 8-metrics on the real eight dimensional manifold M. In
terms of the complex co-frame of eight 1-forms χα = (χa, χ̄a) on M (with
dual basis of vector fields eα = (ea, ēa) ), the line element of h is given by

hds
2 = hαβχ

α ⊗ χβ ≡
1

2
ηab(χ

a ⊗ χb + χ̄a ⊗ χ̄b) (5)

and the line element of k is given by

kds
2 = kαβχ

α ⊗ χβ ≡
i

2
ηab(−χ

a ⊗ χb + χ̄a ⊗ χ̄b). (6)

The two real metrics have Kleinian (neutral or ultrahyperbolic) signatures
(4,4).
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The holomorphic Cartan structure equations are given by

dχa − χb ∧ Γa
b = 0,

Γab + Γba = 0, (7)

dΓa
b + Γa

c ∧ Γc
b = −

1

2
F a

bcdχ
c ∧ χd,

where Γa
b denotes the holomorphic Levi-Civita connection 1-form (with co-

variant derivative ∇), and F a
bcd are the components of its curvature 2-form

F a
b . The structure group is SO(4,C) and the connection and curvature forms,

which take values in the Lies algebra so(4,C), can be written as the sum
of their self-dual and anti-self-dual parts, +Γa

b ,
− Γa

b ,
+ F a

b ,
− F a

b respectively.
Here, *+F a

b = i+F a
b , *−F a

b = −i−F a
b . In 4× 4 matrix form

+Γa
b =

[

$0′
0′1 $0′

1′1
$1′

0′1 −$0′
0′1

]

(8)

where here 1 is the unit 2×2 matrix and $0′
0′, $

0′
1′, $

1′
0′ denote the independent

components of +Γa
b . Similarly,

−Γa
b =

[

ωA

B
0

0 ωA

B

]

(9)

where the trace of the 2 × 2 matrix
(

ωA

B

)

is zero. Other self-dual and anti
self-dual objects can be written similarly, for instance,

−F a
b =

[

ΩA

B
0

0 ΩA

B

]

(10)

where
ΩA

B
= dωA

B
+ ωA

C
∧ ωC

B
. (11)

The structure group SO(4,C) is isomorphic to {SL(2,C)L×SL(2,C)R}/
�

2.
The self-dual connection and curvature take values in the Lie algebra sl(2,C)R

and the anti-self dual connection and curvature take values in the Lie algebra
sl(2,C)L.

It will also be convenient subsequently to use a two-component spinor
approach to the geometry, [32]. This can be summarized as follows, using
notation which is compatible with the above, [29].
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In a conventional two component spinor formulation the line element,
given by equation (2), can be written

ds2 = εABεA′B′χAA′

⊗ χBB′

, (12)

where the basis of holomorphic co-frames is represented by a 2×2 matrix
χAA′

,

χAA′

=

[

χ1 χ3

χ2 χ4

]

. (13)

The Cartan structure equations (7) take the form

dχAA′

− χAB′

∧ ωA

B
− χBA′

∧$A′

B′ = 0,

ΩA

B
≡ dωA

B
+ ωA

C
∧ ωC

B
, (14)

Ω̃A′

B′ ≡ d$A′

B′ +$A′

C′ ∧$C′

B′ .

Here, the anti self-dual and self-dual components of the Levi-Civita spin
connection are given, respectively, by ωA

B
and $A′

B′ , in agreement with equa-
tions (8) and (9). Bold upper case Latin indices and primed ordinary upper
case Latin indices represent, respectively, transformation properties under
SL(2, C)L and SL(2, C)R the anti self-dual and self-dual subgroups of the
structure group SO(4, C) = {SL(2, C)L× SL(2, C)R}/

�
2. The components

of the curvature 2-forms are given by

ΩA

B
= ΨA

BCD
ΣCD + 2ΛΣA

B
+ ΦA

BC′D
′ ΣC′D′

,

Ω̃A′

B′ = Ψ̃A′

B′C′D′ΣC′D′

+ 2ΛΣA′

B′ + ΦCD
A

′

B′ ΣCD, (15)

where ΣA

B
= 1/2χA

A′∧χA′

B
and ΣA′

B′ = 1/2χA′

A
∧χA

B′ . The the anti self-dual and
self-dual components of the Weyl spinor are given, respectively, by the totally
symmetric spinors ΨABCD and Ψ̃A′B′C′D′ and −2ΦA

BC′D
′ and 24Λ correspond

respectively to the trace free part of the Ricci tensor and the Ricci scalar.
In the half-flat case, for example here chosen to be the anti-self dual or

right flat case,

ΩA

B
= ΨA

BCD
ΣCD,

Ω̃A′

B′ = 0. (16)

A half-flat metric is automatically Ricci flat, that is

ΩA

B
∧ χBB′

= 0. (17)
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3 One (complex) parameter family of holo-

morphic 4- metrics including half-flat met-

rics

In this section one parameter families of holomorphic metrics which reduce,
when the parameter is equal to one, to half-flat, anti self-dual 4-metrics
(respectively self-dual metrics) on M will be considered. The coordinates
used are such that the volume element, given in equation (4), is equal to
idz1 ∧ dz2 ∧ dz3 ∧ dz4.

Using Plebański’s “second” type of local coordinate description, the line
element of the first one- complex parameter (p) family of metrics to be con-
sidered here is

ds2 = dz1 ⊗ dz4 + dz4 ⊗ dz1 − dz2 ⊗ dz3 − dz3 ⊗ dz2 − 2β,33 dz
1 ⊗ dz1

− 2β,34 (dz1 ⊗ dz2 + dz2 ⊗ dz1)− 2β,44 dz
2 ⊗ dz2, (18)

where the holomorphic function β satisfies a generalization of Plebański’s
second equation

β,14−β,23 +p(β,33 β,44−(β34)
2) = 0. (19)

When p = 1 equations (18) and (19) define half-flat anti self-dual metrics and
equation (19) reduces to Plebański’s equation. A co-frame for the metric,
relative to which the self dual part of the Levi-Civita connection is zero when
p = 1, is given by

χ1 = dz1, χ2 = dz2, χ3 = dz3 + β,34 dz
1 + β,44 dz

2,

χ4 = dz4 − β,33 dz
1 − β,34 dz

2, (20)

The representation of these holomorphic metrics takes the following spino-
rial form. The metric given by equation (18) is

ds2 = (εABεA′B′ − 2ιA′ιB′βAB)dzAA′

⊗ dzBB′

. (21)

where ι0
′

= 0 and ι1
′

= 1, and

zII′

=

[

z1 z3

z2 z4

]

. (22)
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The generalization of Plebanski’s second equation, that is equation (19), is

�
β + pβABβ

AB = 0, (23)

where
�
≡ εABεA

′B′

∂2/∂zAA′

∂zBB′

. Here and henceforth the differential
operator ιA

′

∂/∂zAA′

will be denoted ∂A, and

βAB ≡ ∂A∂B(β). (24)

The co-frame given by equation (20) is (compare [6, 14]),

χAA′

= (δAI δ
A′

I′ − ιA
′

ιI′βA

I )dzII′

, (25)

This co-frame is a basis in which the connection 1-forms are

ωA

B
= −∂C(βA

B
)ιC′dzCC′

,

$A′

B′ = 1/2(1− p)ιA
′

ιB′∂C(βPQβ
PQ)ιC′dzCC′

, (26)

and the curvature components are

ΨABCD = −∂A∂BβCD,

ΨA′B′C′D′ = ιA′ιB′ιC′ιD′Ψ,

Ψ = 1/4[p− 1][
�

(βPQβ
PQ) + 2βCD∂C∂D(βPQβ

PQ)], (27)

ΦA′B′CD = 1/2(1− p)ιA′ιB′∂C∂D(βPQβ
PQ),

Λ = 0.

The self-dual part of the Weyl tensor is Petrov type N or zero. When p = 1
the co-frame above defines a basis in which the components of the self-dual
part of the connection $A′

B′ are zero and the metrics are half-flat. When p
is not equal to one, the Ricci tensor corresponds to that of a Maxwell field
with self-dual part admitting ιA′ as a repeated principal null spinor.

Using a similar notation the analogous equations generalizing results for
self-dual metrics can be written down. These correspond to interchanging
the indices 2 and 3, and replacing the function β by a function α in equations
(18) to (20). The spinor form of the equations is the following. The metric
and co-frame are given by

ds2 = (εABεA′B′ − 2ιAιBαA′B′)dzAA′

⊗ dzBB′

, (28)

χAA′

= (δAB δ
A′

B′ − ιAιBα
A′

B′)dzBB′

, (29)
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where αA′B′ ≡ ∂A′∂B′(α), and ∂A′ ≡ ιA∂/∂zAA′

. The equations satisfied
by these metrics are obtained from those satisfied by self-dual metrics by
generalizing the Plebanski equation for self-dual metrics, to

�
α + qαA′B′αA′B′

= 0. (30)

When the complex parameter q = 1, self-dual metrics and the corresponding
Plebański equation are recovered. It is the case of course, that all solutions of
the above differential equations for α and β can be generated from solutions
of the corresponding equations where the parameters are unity merely by
rescaling the relevant dependent and/or independent variables. However
the curvatures of the metrics depend on the values of p and q and hence
it is convenient to explicitly use the above parameter dependent differential
equations.

The co-frame given by equation (29) defines a basis in which the connec-
tion 1-forms are

ωA

B
= 1/2(1− q)ιAιBιC∂C′(αP ′Q′αP ′Q′

)dzCC′

,

$A′

B′ = −ιC∂C′(αA′

B′)dzCC′

, (31)

and the curvature components are

ΨABCD = ιAιBιCιDΨ̃,

Ψ̃ = 1/4[q − 1][
�

(αP ′Q′αP ′Q′) + 2αC′D′

∂C′∂D′(αP ′Q′αP ′Q′

)],

ΨA′B′C′D′ = −∂A′∂B′αC′D′,

ΦABC′D′ = 1/2(1− q)ιAιB∂C′∂D′(αP ′Q′αP ′Q′

), (32)

Λ = 0.

Some exact solutions of these equations, which will be used in examples in
the next section, can easily be obtained from the above equations by making
a simplifying assumptions.1

1It is interesting to note that if β satisfies equation (23), and in addition β,2 = β,3
then β also satisfies equation (30), with q = p. The corresponding metrics (21) and (28)
have holomorphic Killing vector fields K = ∂/∂z2 − ∂/∂z3 , and can both be expressed
in terms of β, the holomorphic function of three variables{z1, z3, z4}, which satisfies the
equation β,14−β,33 +p(β,33 β,44−(β,34 )2) = 0.

M Dunajski (private communication) has pointed out this equation can be shown to be
is equivalent to the three dimensional wave equation in the appropriate coordinates. The
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Example 1: Consider first the class of metrics (equation 18 or 21)
satisfying the additional condition

ιAιBβAB = β,44 = 0. (33)

The solutions of equation (23) which also satisfy this equation (33) are
given by

βAB = ιAιB[A,3 z
4 + (A,1−2pAA,3 )z2 +B]− A(ιAoB + ιBoA), (34)

where A and B are arbitrary holomorphic functions of z1 and z3 only. The
only non-zero curvature components are now

Ψ0000 = −[A,333 z
4 + (A,133−p(A

2),333 )z2 +B,33 ],

Ψ0001 = −A,33 ,

ΦABC′D′ = ιAιBιC′ιD′(p− 1)(A2),33 . (35)

The Weyl tensor is right flat and of Petrov type III, N or 0 and, if non-zero
the Ricci tensor is of pure radiation form.

The analogous simplifying assumption on the function α is

αA′B′ιA
′

ιB
′

= α,44 = 0. (36)

Solutions of equation (30) which also satisfy equation (36) are given by

αA′B′ = ιA′ιB′ [Ã,2 z
4 + (Ã,1−2qÃÃ,2 )z3 + B̃]− Ã(ιA′oB′ + ιB′oA′), (37)

where Ã and B̃ are arbitrary holomorphic functions of z1 and z2 only. The
only non-zero curvature components in this case are

Ψ0′0′0′0′ = −[Ã,222 z
4 + (Ã,122−q(Ã

2),222 )z3 + B̃,22 ],

Ψ0′0′0′1′ = −Ã,22 ,

ΦABC′D′ = ιAιBιC′ιD′(q − 1)(Ã2),22 . (38)

solutions determine metrics which, when p=1, correspond to holomorphic versions of the
SD or ASD Gibbons-Hawking solutions, [31], [9]. In appropriate local complex coordinates
p, s, w, t the SD and ASD metrics,+ g and −g, determined by the above equation with p=1,

are respectively given by
+
−ds2 = V (dp2 − 4dwds)− V −1(±dt + Ω)2

where V,pp − V,sw = 0, and ∗dV = −dΩ.
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4 Lorentzian 4-metrics from holomorphic met-

rics

In this section examples will be given of 4-metrics which are constructed from
certain of the holomorphic metrics introduced in section three. In the first
two examples previously obtained results for Ricci flat metrics, [14], will be
generalized to produce solutions of Einstein’s equations with pure radiation
energy-momentum tensors. In the third example the pull-back of the real
part of a holomorphic 4-metric to a real four dimensional manifold will be
discussed.

Example 2: Here the construction of new holomorphic metrics on M
by the superposition of the metrics of Example 1 will be presented. These
results extend those in reference [14] where self-dual and anti-self dual so-
lutions were superposed to form Ricci flat, but not half-flat, holomorphic
metrics. As in that reference, consider holomorphic metrics of the form

ds2 = (εABεA′B′ − 2ιAιBαA′B′ − 2ιA′ιB′βAB)dzAA′

⊗ dzBB′

, (39)

that is

ds2 = dz1 ⊗ dz4 + dz4 ⊗ dz1 − dz2 ⊗ dz3 − dz3 ⊗ dz2

− 2(β,33 +α,22 )dz1 ⊗ dz1 − 2β,34 (dz1 ⊗ dz2 + dz2 ⊗ dz1)

− 2α,24 (dz1 ⊗ dz3 + dz3 ⊗ dz1). (40)

where α satisfies equations (30) and (36), and hence is given by equation
(37), and β satisfies equations (23) and (33), and hence (34). When either α
or β is zero the results of Example 1 are re-obtained. In the gauge in which
the Cartan co-frame for the metrics given by equations (39) or (40) is chosen
to be, as in reference [14],

χAA′

= (δAB δ
A′

B′ − ιAιBα
A′

B′ − ιA
′

ιB′βA

B + ιBιB′ιCβ
ACιC′αA′C′

)dzBB′

, (41)

it follows, using equations (34) and (37), that the connection 1-forms are
given by

ωA

B
= −∂C(βA

B
)ιC′dzCC′

+ (1− q)ιAιBιCιC′(Ã2),2 dz
CC′

,

$A′

B′ = −ιC′∂C(αA′

B′)dzCC′

+ (1− p)ιA
′

ιB′ιCιC′(A2),3 dz
CC′

. (42)
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The non-zero Weyl curvature components are, the same as they are in equa-
tions (35) and (38), and Λ = 0, but now

ΦABC′D′ = ιAιBιC′ιD′ [(p− 1)(A2),33 +(q − 1)(Ã2),22 ]. (43)

The Weyl curvature is consequently Petrov type III⊕III, or more (left and/or
right) degenerate and the Einstein tensor has a pure radiation source. This
class of metrics can be regarded as being obtained by a superposition of the
metrics considered in Example 1. The metrics reduce to the vacuum metrics
considered in reference [14] when the parameters p and q are each one.

Example 3: In this example real 4-metrics, with Lorentzian signature,
which are solutions of Einstein’s equations are obtained from the metrics in
Example 2.

Consider the holomorphic metrics constructed in Example 2. Following
reference [14], it is clear that real, pure radiation Lorentzian metric solutions
of Einstein’s equations (or vacuum solutions when p = q = 1) can be con-
structed from them. Let the four dimensional real submanifold N, of M be
defined, by

ρ : N →M by zAA′

= xAA′

. (44)

where the local coordinates on N are given by

xAA′

=

[

x1 x3

x2 x4

]

, (45)

x1 and x4 are real and x2 is the complex conjugate of x3.
When q = p and the function α is chosen, as it always can be, so that on

the pull-back to N, ᾱ = β = ψ, the pull-back of equation (40) to N is the
real Lorentzian metric

ds2 = dx1 ⊗ dx4 + dx4 ⊗ dx1 − dx2 ⊗ dx3 − dx3 ⊗ dx2

− 2(ψ,33 +ψ̄,22 )dx1 ⊗ dx1 − 2ψ,34 (dx1 ⊗ dx2 + dx2 ⊗ dx1)

− 2ψ̄,24 (dx1 ⊗ dx3 + dx3 ⊗ dx1). (46)

where the comma now denotes partial derivatives with respect to the coor-
dinates xi. By construction, the complex function ψ satisfies the equations,
now with independent variables xi rather than zi,

ψ,14−ψ,23 +p(ψ,33 ψ,44−ψ,34 ψ,34 ) = 0,

ψ,44 = 0, (47)
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or equivalently

�
ψ + pψABψ

AB = 0,

ιAιBψAB = 0. (48)

From equation (34) it follows that

ψAB = ιAιB[A,3 x
4 + (A,1−p(A

2),3 )x2 +B]− A(ιAoB + ιBoA), (49)

where A and B are arbitrary complex functions of x1 and x3 only. The con-
nection forms and curvature components can be obtained straightforwardly
from equations (42) and (43). The Weyl curvature is Petrov type III or more
degenerate and the pure radiation source is zero when p = 1.

Example 4: (See also, for comparison, earlier work on real slices of M,
[20, 21].) It is also straightforward to construct real Lorentzian 4- metrics,
on real four dimensional sub- manifolds, N, of M, from the real or imaginary
parts of holomorphic metrics like those in equations (21) and (28). This
point can be illustrated by considering the former metrics, although the the
latter can equally well be used. As mentioned in section two, a holomorphic
metric g, here determined by a holomorphic function β, can be split into
its real and imaginary parts, h and k. Let N be a real four dimensional
submanifold of M, with local coordinates xi, with x1 and x4 real and x2 and
x3 complex conjugates and let ρ :N→M be defined by zi = xi, as in the
previous example. Let

ρ∗β = φ. (50)

The pull-back of h to N is then given by

ds2
h

= dx1 ⊗ dx4 + dx4 ⊗ dx1 − dx2 ⊗ dx3 − dx3 ⊗ dx2

− (φ,33 + φ̄,22)dx
1 ⊗ dx1 − φ,44dx

2 ⊗ dx2 − φ̄,44dx
3 ⊗ dx3 (51)

− φ,34(dx
1 ⊗ dx2 + dx2 ⊗ dx1)− φ̄,24(dx

1 ⊗ dx3 + dx3 ⊗ dx1),

where the sub-scripts denote partial derivatives with repect to the coordinates
xi. Since the determinant of this real metric is given by 1 − φ,44φ̄,44, its
signature is Lorentzian as long as 1 >| φ,44 |

2. The pull-back of k, the
imaginary part of g, to N is degenerate with ∂/∂x4 being an eigenvector of
g with eigenvalue zero. The curvature of the pull-back of h will depend on
the equations satisfied by β and hence φ. It does not necessarily follow, of
course, that this real 4-metric will be Ricci flat when the holomorphic metric
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and the real 8-metrics are Ricci flat. However there can be a simple relation
between their curvatures. A case which illustrates this latter point is simply
obtained by assuming that φ also satisfies the additional condition

φ,44 = 0. (52)

In this case the metrics given by equation (51) can be immediately seen to
be identical to the metrics given by equation (46) when φ = 2ψ. This latter
observation leads directly to the following two results in this special case
where equation (52) is also satisfied:

(a) when the holomorphic metric g is anti-self dual and β satisfies equation
(23), with p=1, the pull-back of the metric h to N is of the same form as the
pure radiation metric, with p = 2, given in Example 3 above.

(b) when the holomorphic metric g is not half-flat but belongs to the class
of metrics given by equations (21)-(23), with p = 1/2, then the pull-back of
h to N is a vacuum solution belonging to the class given in Example 3, with
p = 1.

5 Real p-forms and Lorentzian 4-metrics

In this section real differential forms on the holomorphic four-manifold M
will be constructed from half-flat holomorphic solutions, satisfying equations
(12) to (16), and their complex conjugates. The forms will have transforma-
tion properties determined by the structure groups of the half-flat metrics.
Lorentzian metrics, on real four dimensional manifolds, will be constructed
from these real forms.

Real forms on M can be constructed from co-frames, χAA′

, for anti-self
dual holomorphic metrics and their complex conjugates as follows. (Sim-
ilar calculations could be carried out using co-frames determining self-dual
geometries.) Let the complex conjugate of χAA′

be denoted by χ̄AA
′

; bold
primed indices indicate transformation properties under SL(2, C)L and ordi-
nary unprimed indices indicating transformation properties under SL(2, C)R.
Consider the Hermitian matrix-valued p-form σAA

′

, 2≤ p ≤ 8 defined on M
by

σAA

′

= iχAA′

∧ χ̄AA
′

∧ κAA
′ ,

κAA′ =

[

κ1 κ3

κ2 κ4

]

. (53)
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Here κAA′ is chosen to be a Hermitian matrix-valued (p − 2)-form so that
it corresponds to a real vector-valued (p − 2)−form κa. In addition, let κa

be chosen to be covariantly constant with respect to the real flat connection
given by

$a
b ↔ $AA′

BB′ = δA
B$

A′

B′ + δA′

B′ $̄A
B. (54)

This flat connection takes values in the Lie algebra of SO(1, 3)R = {SL(2, C)R×
SL(2, C)R }/

�
2, and κa has been chosen so that its covariant exterior deriva-

tive with respect to this flat connection is zero, that is

dκa − (−1)pκb ∧$
b
a = 0; or equivalently

dκAA′ − (−1)pκBA′ ∧ $̄B
A − (−1)pκAB′ ∧$B′

A′ = 0. (55)

The p-form σAA
′

corresponds in the usual way to four real p-forms

σAA
′

=

[

σ1 σ3

σ2 σ4

]

, (56)

where σ1 and σ4 are real and σ2 and σ3 are complex conjugates. These
are compatible with the real so(1,3)L-valued connection

ωa

b
=− Γ̄a

b +− Γa
b ↔ δA

B
ω̄A′

B′ + δA
′

B′ωA

B
, (57)

in the sense that it follows from the method of construction that the covariant
exterior derivative of σa, with respect to the latter connection, is zero i.e.

dσa + (−1)pσb ∧ ωa

b
= 0, or equivalently

dσAA
′

+ (−1)pσBA
′

∧ ωA

B
+ (−1)pσAB

′

∧ ω̄A′

B′ = 0. (58)

Lower case bold Latin indices, a,b,c.. represent transformation properties
under SO(1, 3)L = {SL(2, C)L × SL(2, C)L }/

�
2 and range and sum over 1

to 4.
Furthermore, it also follows from the method of construction that

ΩA

B
∧ σBA

′

= 0 (59)

and similarly for the complex conjugate equation. In other words, if Ωa

b
is

the curvature 2-form of ωa

b
then

Ωa

b
∧ σb = Ωa

b
∧ εb

acd
∧ σc = 0, (60)
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with Levi-Civita tensor given by

εabcd = ε[abcd] ↔ i(εACεBDεA′D′εB′C′ − εA′C′εB′D′εADεBC), ε1234 = i. (61)

These equations for differential forms can be pulled back to sub-manifolds
of M, in particular to four dimensional real manifolds, N↪→M, so that they
define real geometrical structures on N, [18]. Here only the cases where
the forms σa are 3-forms, and the construction of Lorentzian metrics from
them, will be discussed further. The 2-form case is briefly discussed in the
appendix.

In the case where the real forms σa are 3-forms it is natural to construct
Lorentzian 4-metrics on a four dimensional submanifold N of M by first
pulling back the forms to N and then using the duality of vector densities
and 3-forms in four dimensions When the four real 3-forms on M, σa, can
be pulled back to a basis of real 3-forms on N, (also written σa), then there
exists a co-frame of 1-forms θa ↔ θAA

′

on N such that

σa =
1

6
εa
bcd

θb ∧ θc ∧ θd, (62)

θAA
′

=

[

θ1 θ3

θ2 θ4

]

, (63)

where θ1 and θ4 are real, and θ2 = θ̄3. It then follows that a Lorentzian
metric, g, is defined on N by

ds2 = ηabθ
a ⊗ θb. (64)

The Cartan structure equation which follows from the pull-back to N of
equation (55) (with p = 3) relates the real Lorentzian metric, g , on N to
the pull back of the so(1,3)-valued connection ωa

b
(also written ωa

b
) and its

torsion 2-form Θa. It encodes, at least in part, the starting anti-self dual
geometry on M, and is given by

dθa − θb ∧ ωa

b
= Θa, (65)

where Θa = 1
2
Θa

bc
θb∧θc, Θa

bc
= −Θa

cb
. Equation (55) implies that the trace-

free condition, Θa

ba
= 0, must be satisfied. If the Levi-Civita connection of
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g is written Aa

b
with curvature 2-form F a

b
, then on N

dθa − θb ∧ Aa

b
= 0,

Aa

b
= ωa

b
+ τa

b
, (66)

τab =
1

2
(Θabc − Θbac −Θcab)θc,

F a

b
= Ωa

b
+Dτa

b
+ τa

c
∧ τ c

b
,

where D denotes the covariant exterior derivative determined by ωa

b
.

From a calculational point of view it is simplest to use the above results
to compute the inverse metric density of weight two corresponding to the
metric g on N, as in the following. Let xi be local coordinates on N. Then
on N the (pull-back of the) 3-forms σAA

′

can be written

σAA
′

= (1/3!)EAA
′iηijkldx

j ∧ dxk ∧ dxl, (67)

where the weight minus one tensor density ηijkl = η[ijkl], and η1234 = i.

When the weight one vector densities EAA
′i∂/∂xi are linearly independent,

the inverse metric density is given by

(det g)gII′JJ ′

= εABεA
′B′

EII′

AA
′EJJ ′

BB
′ , (68)

and g is given by

ds2 = gijdx
i ⊗ dxj = gII′JJ ′dxII′

⊗ dxJJ ′

. (69)

The vector fields {(detg)−1/2EII′

AA
′∂/∂xII′

} form a basis dual to the basis

given by the co-frame {θAA
′

}.
The details of the Lorentzian geometry on N depend both on the way N is

embedded in M and on the choice of the forms κAA′ . When these calculations
are carried out using the co-frame given by equation (25), equation (52)
reduces in this case to the requirement that the 1-forms κAA′ be closed.
Then, in a star-like region on M these forms can be chosen, without loss of
generality, to be given by

κII′

= df II′

, (70)

where the Hermitian f II′

↔ f i, corresponds to four real functions, f i, on M.
With this choice the 3-forms on M are given by

σAA
′

= i(δAMδ
K′

M ′− ιK
′

ιM ′βA

M)dzMM ′

∧ (δA
′

N ′δK
N − ι

KιN β̄
A′

N ′ )dz̄NN ′

∧dfKK′. (71)
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The dependence of the real geometry on N on the choice of the embedding
mapping ρ : N→M can be exhibited by again denoting local coordinates on
N by xi , and by writing the local coordinate presentation of this map in
terms of functions ρII′

, with zII′

= ρII′

(xJJ ′

). Then if

ρ∗(βA

I ) = ϕA

I , (72)

the pull back of σAA
′

to N is given by

i(δAMδ
K′

M ′−ιK
′

ιM ′ϕA

M)(δA
′

N ′δK
N−ι

KιNϕ
A

′

N ′)
∂ρMM ′

∂xII′

∂ρ̄NN ′

∂xJJ ′

∂fKK′

∂xLL′
dxII′

∧dxJJ ′

∧dxLL′

.

(73)
Subject to the appropriate transversality condition being satisfied a natural
choice of coordinates on N is given by the functions f i. With this choice the
remaining incompletness in the specification of the Lorentzian 4-metric on N
lies in the specification of the embedding map ρ. A way in which to make
natural choices of this map and hence obtain solutions of interesting equations
on N, such as the vacuum Einstein equations, is a key missing feature of this
construction. Nevertheless the method does enable (subject to the above
conditions such as the linear independence of the vector densities) Lorentzian
metrics to be constructed in a coordinate independent way on any real four
dimensional sub-manifold from half-flat holomorphic metrics on M.

An illustration of the use of the above method to construct a class of
Lorentzian 4- metrics on N is given in the final example. Here particularly
simple choices of the local coordinates on N and the mapping ρ are made
that enable comparisions with previous examples to be drawn.

Example 5: Let N be given by the particularly simple mapping ρ :
N→M with local coordinate presentation xII′

→ zII′

= xII′

. In other
words, as in previous examples, N is given by zi = xi. Let f i be chosen to be
xi, i.e. f i = xi. Then, the weight one vector density components are given
by

EII′

AA
′ = (3δI

A
δI′

A′ + ιA′ιI
′

ϕI
A

+ ιAι
Iϕ̄I′

A′ − (ϕAJι
J)(ϕ̄A′J ′ιJ

′

)ιIιI
′

), (74)

and, in terms of components with respect to the coordinates xi ←→ xII′

the

19



inverse metric density is given by

(det g)gII′JJ ′

= [9εIJεI
′J ′

+ 6ιI
′

ιJ
′

ϕIJ + 6ιIιJ ϕ̄I′J ′

− 3ιJ ιJ
′

(ϕI
P ι

P )(ϕ̄I′

P ′ιP
′

)

− 3ιIιI
′

(ϕJ
P ι

P )(ϕ̄J ′

P ′ιP
′

)− ιI
′

ιJ(ϕI
Aι

A)(ϕ̄J ′

Á
ιA

′

) (75)

− ιJ
′

ιI(ϕJ
Aι

A)(ϕ̄I′

Á
ιA

′

)− 3ιIιI
′

ιJ ιJ
′

(ϕABϕ
AB)(ϕ̄A′B′ιA

′

ιB
′

)

− 3ιIιI
′

ιJιJ
′

(ϕ̄A′B′ϕ̄A′B′

)(ϕABι
AιB)].

Furthermore ϕAB = ∂2ϕ/∂xA1′

∂xB1′

or

ϕAB =

[

ϕ,33 ϕ,34

ϕ,34 ϕ′44

]

, (76)

and on N
ϕ,41 − ϕ,32 + [ϕ,33ϕ,44 − (ϕ,34)

2] = 0. (77)

Athough these expressions lead to curvature forms which are to compli-
cated to be usefully discussed in this example, two special and simpler cases
are worth noting. First, the linearized version of these equations and ge-
ometrical quantities determine all the real linearized solutions of Einstein’s
vacuum equations, with the linearized field ϕ satisfying the complex wave
equation on Minkowski space-time and corresponding to Penrose’s Hertz po-
tential for spin two fields, [33]. Second when the function ϕ is also assumed
to satisfy the simplifying equation

ϕ,44 = 0, (78)

the metrics constructed in this example can be compared directly with the
metrics in the previous examples. It is a straightforward matter to see that
these metrics (up to a constant scale factor) are the same as the metrics given
by equations (46)-(49) when p = 3. Hence the method of combining half-flat
metrics using the real 3-forms produces, in the special case of this exam-
ple, Lorentzian 4-metrics which are, when ϕ,34 is non-zero, pure radiation
solutions and not vacuum solutions, of the real Einstein’s equations.

The generation of real solutions of Einstein’s equations with non-zero
energy-momentum tensors from half-flat holomorphic solutions is not with-
out interest, [16]. However Example 5 also makes it clear that further
development of the approach using real 3-forms, introduced in this section,
requires the clarification of the geometrical conditions which should be im-
posed on the embedding map ρ.

I would like to thank Maciej Dunajski and Pawel Nurowski for a number

of very helpful comments.
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6 Appendix: Real 2-forms and Lorentzian

metrics

This appendix contains a brief discussion of a possible proceedure for the
construction of Lorentzian 4-metrics when the differential forms constructed
in section five, σa, are four real 2-forms and the 0-forms κa are SO(1, 3)R -
gauge related to constants. It is natural in this case to construct four real
1-forms from the 2-forms by taking the inner product with a real vector field,
V, on M. It is then a straight forward matter to use the results in section
five to prove the following proposition.

Proposition:
Suppose that a real vector field on M, V, exists which satisfies the gauge

covariant conditions:

£V σ
a + σb(V cωa

b
) = 0,

εa
bcd

(V cΩb

a
) ∧ σc = 0, (79)

where £ and c respectively denote the Lie derivative and inner product.
Then, if four real 1-forms are defined by θa ≡ V cσa, it follows that

dθa − θb ∧ ωa

b
= 0,

εa
bcd

Ωb

a
∧ θc = 0. (80)

Such 1-forms define a degenerate metric on M given by

ds2 = ηabθ
a ⊗ θb = εABεA′B′θAA

′

⊗ θBB
′

, (81)

θAA
′

= WA

B χ
A′B +W

A
′

B′χAB′

, (82)

where, if EAA′ is the basis of holomorphic vector fields dual to χAA′

, and
V = V AA′

EAA′ + c.c., then WA

B = iV AA′

κBA′ .
Corollary:
Let N be a real four dimensional sub-manifold of M. Then, if the pull-

backs of the 1-forms θa to N are linearly independent, they define a (non-
degenerate) Ricci-flat Lorentzian metric on N given by the pull-back of the
above degenerate metric.

It should be noted that the result contained in Corollary 1 follows even
if the left-hand sides of equation (79) are required to be zero only on the
pull-back to N. The definition of the 1-forms θa implies that on M, V cθa =
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0. Hence linear independence of the 1-forms on N requires that V not be
tangent to N. When the forms on N are linearly dependent they may still
satisfy constraint equations on sub-manifolds of N or be extended to obtain
solutions. The main difficulty in using this proposition lies in finding an
appropriate vector field V. Nevertheless known non-twisting type N vacuum
solutions can be re-obtained by using this proposition.

22



References

[1] Newman E.T. (1976) Gen. Rel. Grav., 7, 107

[2] Penrose R. (1976) Gen. Rel. Grav., 7, 1976, 31
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