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Abstract: Vector fields with components which are generalized zero-
forms are constructed. Inner products with generalized forms, Lie derivatives
and Lie brackets are computed. The results are shown to generalize those
reported for generalized vector fields. Generalized affine connections and
metrics are defined and the fundamental theorem of Riemannian geometry
is extended. The global structure of the exterior derivative of generalized
forms is investigated.



1 Introduction

Generalized forms have been applied in a number of geometrically related
areas of physics. By extending the algebra and calculus of ordinary differ-
ential forms new points of view about a number of different geometrical and
physical systems have been obtained. For example in twistor theory forms of
negative degree were introduced in order to try to extend twistor results on
half-flat space-times and to associate an abstract twistor space with general
analytic solutions of Einstein’s vacuum field equations [1] [2] [3], field theo-
ries, such as BF, Yang- Mills and gravity theories have been reformulated as
generalized topological field theories with generalized Chern-Pontrjagin and
Chern-Simons forms as Lagrangians [4] [5], [6], [7] ,and generalized differen-
tial forms have been related to forms on path space [8]. Further applications
are contained in a series of papers, [9] to [12], [6] and [7], devoted to the
development of the formalism of generalized forms. Generalized differen-
tial forms were extensively studied in these latter papers but they dealt only
with ordinary vector fields. Some interesting progress going beyond ordinary
vector fields was made in [13] and [14] where the concept of a generalized
vector field was introduced. In this paper the study of vector fields is con-
tinued and their work is extended. First a dictionary between the algebra
and calculus of certain functions and vector fields on a superspace and the
algebra and calculus of generalized forms and vector fields is established.
This dictionary is not only useful in its own right but it also facilitates the
introduction of the concept of a generalized form-valued vector field. In
the case considered here such an object is determined by an ordered pair
consisting of of an ordinary vector field and a (1,1) type tensor field. This
concept includes generalized vector fields as a special case and provides an
improved understanding of their properties. The introduction of generalized
form-valued vector fields also enables generalized metrics and affine connec-
tions to be defined by constructions which can be extended to more general
connections.

A brief review of the algebra and differential calculus of generalized forms
needed in this paper is given in the second section. Different types of gen-
eralized differential forms, on an n dimensional manifold M, are labelled by
a non-negative integer N. In this paper only the case where N = 1 is con-
sidered but the results are easily extendible to N = 2. A type N =1
generalized p—form is defined by an ordered pair consisting of two ordinary
forms of degrees p and p + 1 respectively, where —1 < p < n. The module



of type N = 1 generalized p—forms on M is denoted Afl)(M ). The exterior
product for generalized forms makes the vector space of type N = 1 forms at
a point z in M, A% (z) = &,-" 1 A{}(2), into an associative algebra, in fact a
super-commutative graded algebra. Generalized forms of degree zero form a
commutative ring with 1 # 0. The graded module, and super-commutative
graded algebra over the ring of smooth functions, on M is equipped with an
exterior derivatives, d : Afl)(M ) — AfSl(M ), a super-derivation of degree
one. While both the exterior algebra and differential calculus satisfied by
generalized forms are similar to the algebra and calculus of ordinary forms
there are some differences. For instance, generalized forms of degree p = —1
are allowed and the generalized de Rham cohomology can be different from
the de Rham cohomology of ordinary forms.

The actions of ordinary vector fields on generalized forms on M presented
previously, [10], are summarized in section three. In the fourth section the
algebra and calculus of generalized forms and the actions of ordinary vector
fields on M are represented on the Whitney sum of a reverse parity trivial
line bundle and the reverse parity tangent bundle over M. This extends to
generalized forms a known approach to ordinary differential forms, [16]. This
point of view is employed in the fifth section where generalized form-valued
vector fields are introduced and their properties explored. The definitions of
the interior products and Lie derivatives of generalized forms with respect to
such vector fields and the definition of a Lie bracket are given, extending the
results of section three from ordinary vector fields to generalized form-valued
vector fields. Generalized vector fields, which were introduced in [13] and [14]
and applied to the Hamiltonian formalism for a free relativistic particle, are
discussed and shown to form a sub-class of generalized-form valued vector
fields. Two examples of the use of generalized form-valued vector fields
are presented, one introducing generalized form-valued Hamiltonian vector
fields. An application is given in the sixth section where generalized form-
valued vector fields are used in the construction of the tensor calculus of
generalized affine connections and metrics. The compatibility conditions of
generalized affine connections and generalized metrics are presented and an
extension of the fundamental theorem of Riemannian geometry is obtained.
The seventh section contains a brief summary of the results and an outline of
ways in which they can be used and developed. Finally there is an appendix
in which the global structure of exterior derivatives of type N = 1 forms is
discussed.

The results in this paper can apply to manifolds and geometrical objects
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that are real or complex but in this paper it will be assumed that the geometry
is real, all geometrical objects are smooth and M is an n—dimensional real,
smooth, orientable and oriented manifold. Bold-face Roman letters are used
to denote generalized forms and generalized vector fields, ordinary forms on
M are usually denoted by Greek letters and ordinary vector fields on M by
lower case Roman letters. Occasionally the degree of a form is indicated
above it. The exterior product of any two forms, for example a and 3, is
written o, and as usual, any ordinary p—form gz, with p either negative or
greater than n, is zero. The Einstein summation convention is used.

2 Algebra and calculus of generalized forms

The algebraic and differential properties of generalized forms are outlined in
this section using the notation of [6] and [7]. In this paper generalized forms
will be expressed in terms of a minus one-form which is linearly independent
of ordinary forms on M, [6]. Hence a basis for type N = 1 generalized forms
consists of any basis for ordinary forms on M augmented by a minus one-
form m. Apart from having a degree of minus one the latter has the same
algebraic properties as an ordinary exterior form. It satisfies the ordinary
distributive and associative laws of exterior algebra and the exterior product

rule
&m = (—1)’md; m? = 0, (1)

together with the condition of linear independence. Thus, for a given choice
of m, a generalized p-form, ac Afl), can be written as

a=a+"am, (2)

where gz, and ‘&’ are, respectively, ordinary p— and (p+ 1)—forms and p can
take integer values from —1 to n. At a point x in M the generalized p—forms

of type N=1, Az(’l)(x), form a real vector space of dimension %. The
dimension of A}(z) = @ijil/\fl)(x) is 2117,

If ¢ is a smooth map between manifolds P and M, ¢ : P — M, then the
induced map of type N = 1 generalized forms, ¢f,) : A() (M) — A} (P), is
the linear map defined by using the standard pull-back map, *, for ordinary
forms
a )m, (3)



* pq * p * : *
and o7}, (ab) = ¢} (a)¢(;)(b). Hence ¢f})(m) = m.
Henceforth in this paper, in addition to assuming that the exterior deriv-
ative of generalized forms satisfies the usual properties, it is assumed that

dm = €, (4)

where € denotes a real constant. If m —m= ym, where u is a non-zero
+1 p+1
. p __p  ptl p  PIt_ T _qp+1
function on M, thena=a+ am =a+ am, wherea =pu ta. Fur-

thermore dm=¢, where € is also a real constant, if and only if du = 0 and
then € = pe.
The exterior derivative of a type N = 1 generalized form & is then

dh = [d + (—1)P" 8] + da m, (5)

where d is the ordinary exterior derivative when acting on ordinary forms.
The exterior derivative d : A{)) (M) — Az(angl (M) is an anti-derivation of degree
one,

d(Ab) = dAb + (—1)"Adb, (6)

and (Afy) (M), d) is a differential graded algebra. The exterior derivative is
discussed in more detail in the appendix.

3 Vector fields and type N =1 forms

In this section the definitions of the inner product and Lie derivative of type

N =1 forms by ordinary vector fields introduced in [10] will be summarized.

Let v be an ordinary vector field tangent to M, v € V(,)(M), where Vo) (M)

is the module of ordinary vector fields over C*°(M), the real valued functions
q

on M. Let the generalized p-form a and g-form b be given, respectively,

41 q q+1 . .
by & + "4 m and B+ B m. The inner product or contraction operator on

generalized forms, i, : A‘E’l) — Né’;)l, for —1 < p < n, is defined in terms of
the inner product for ordinary forms by

ivh = i,b + (3,74 )m. (7)
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Since o = 0, and Z'vgz =0, z'v_al =0 and ivg = (z’véz)m. Furthermore, for
any two vector fields v and w € V(o) (M)

(i) + iy (ia) = 0. (8)
It is a straight forward matter to show that Eq.(7) implies that
io(&b) = (1,8)b + (~1/&(i.b). ©)
that is

p+19

. ] . pl o pdtl .
iv(ab) =i,(aB) + [iv(a B) + (=1)%, (o B)]m,
The Lie derivative with respect to v, £, is defined by

£oa = iyda+ d(i,a), (10)

from which it follows that d o £v5 =£,o0 da.
A calculation then shows that

& m. (11)

L£od = L0+ (£,
A direct consequence of Egs.(9) and (10) above is that £, satisfies the Leibniz
rule

£,(Rb) = (£,80b + 8L,(b), (12)

A couple of important differences from results for ordinary forms should be

noted,
~1 0

£ya =i,(da)m, (13)
and 0 0 1 1
iy(da)=i,da — €i,a + i,dam, (14)

In contrast to the case for ordinary zero-forms, the latter is not equal to the
Lie derivative for . . ) )
Lya = i,da+ [iyda + d(i,a)|m. (15)

If v and w are vector fields in M it follows from the definitions above that

(£ 000 — i 0 £4)8 = [y )2, (16)



(£y0 £y — Lyo £)a= Ly, (17)

where [v, w] denotes the Lie bracket of the vector fields v and w. The latter
type of equation will be used in section five to define a generalization of the
Lie bracket.

In summary, with these definitions, A is a graded algebra and there is
a natural grading of these linear operators on A(M), d is degree 1, £, is of
degree 0 and ¢, is of degree —1. These derivations span a super Lie algebra
and satisfy the H.Cartan formulae, [15],

dod=0,iy,00,+iyo0i,=0, (18)
£y=doiy,+i,0d= dot,— £,0d=0.
£vo£w_£wo£v:£[v,w]v £Uoiw_iwo£v:i[v,w]>

for all vector fields v and w € Vi,)(M).

4 Representation of the algebra and calculus
of generalized forms

The algebra and calculus of ordinary differential forms on M can be expressed
in terms of functions and vector fields on the reverse parity tangent bundle,
IITM, of M, [16]. A recent exposition containing further references can be
found in [17]. A sample of texts where superspace calculations are discussed
is [18], [19], [20].

The reverse parity tangent bundle is just the ordinary tangent bundle
with the parity reversed in the fibre directions. If 2%, a = 1....n = dim M,
denote local coordinates on M then local coordinates on IIT'M are obtained
by adding to these n anticommuting fibre coordinates. The latter are ob-
tained by replacing the natural tangent bundle fibre coordinates with n anti-
commuting (fermionic) coordinates with the same transformation properties.
These can be denoted by the symbols dz® or, as will be done here for no-
tational clarity by (“. Then an ordinary p—form p on M with coordinate
basis components pq,...q,(2%).

P = Tpa1-...ap($a)d$al """ dxap> (19)
p:



corresponds to, r, a homogeneous polynomial of degree p in the anticommut-
ing fibre coordinates on IIT'M

r::;gpaym%xxa>cal ----- con. (20)

The exterior product of ordinary forms p— and ¢—forms on M corre-
sponds to the product of such functions (which are homogeneous polynomials
of respective degrees p and ¢ in the anticommuting coordinates) on II7T'M.
The exterior derivative of ordinary p—forms on M, where p > 0, corresponds
to the action of the odd vector field (“57 9_ on the corresponding functions on
IIT' M and the correspondence can be ertten as

or

Oz’ (21)

dp < ¢

The interior product, i,, of an ordinary p— form p on M by a vector ﬁeld
v= " aza € V(o)(M), corresponds to the action of the odd vector field v®

d(‘l
on the functlon r in IIT'M; the correspondence can be written as
or
Typ — v 22
p aca (22)

For example, the local coordinate expression for the action of a vector field
v on a zero-form p on M is

v(p) = iydp, (23)

and using the correspondences above

0lp) 0" e () (24

The Lie derivative £, on M corresponds to the even vector field, [d,i,],
on IITM where [.,.] denotes the super Lie bracket of the odd vector fields d
and i, or equivalently the supercommutator of the differential operators on
T M

Y

Ly — [dyiy] =do (iy) + iy od, (25)
or ov® _, Or
[d,i,|r = v e + axﬁg ace (26)



Henceforth the same notation will be used for corresponding operators
on M and reverse parity bundles. It will be clear from the context which is
meant, for example on I1T M

£v = [d7 ZU]

or N ov® <B or
Ox®  dxf> ¢

Lor=wv

and correspondingly on M

Lop =ldo(iy) + i, 0d]p.

Ifw= wa% is a another vector field € V(o) (M), calculation of the super

commutator on IIT'M of £, and £, gives
[ £y, £w] = Lyo Ly —L£yoLy= Ly (27)
Similarly computing the supercommutator on IIT'M gives
(£, tw] = £ 00y — 1y 0 Ly = iy, (28)

where [v, w] is the Lie bracket of v and w. By the correspondences the same
results hold for forms on M.

It is a straightforward matter to extend these ideas to generalized forms
of all types on M. Here only type N = 1 forms will be considered in
detail. Let M be the Whitney sum of I[I7'M and a trivial reverse parity line
bundle over M, that is a trivial line bundle with fibre R' replaced by R,
and let RO have anti-commuting coordinate 1 . Local coordinates for M
can then be chosen to be the commuting coordinates x® together with the
anti-commuting coordinates (* = dz® and p. If

r=p+om (29)
is a generalized p—form on M and the ordinary p— and (p+1)—forms p and
o have respective coordinate basis components pq,....a, and o4, ... .q,,, and

dm = ¢, (30)

where € is a constant, then r corresponds to the function

o+ 1)!0a1....ap+1(xa)<al """ CH (31)



on M . The exterior product of generalized forms in M corresponds to the
product of such functions in M. The exterior derivative of a generalized
form r in M, dr, corresponds to the action of the odd vector field on the
corresponding function in M

d:t—>(o‘i 0

Oz + Ea—lL)t. (32)

The interior product, i,r, of a generalized p—form r on M by a vector field
v= 13 € V(,)(M) is the generalized (p — 1)—form

iyt = iyp + (1,0)m (33)
which corresponds to vaa% on M , i.e. on M
0
Lt 3—; (34)

(dv = (¢*3% + e )t and i,vt = v° 86(2 in accordance with the convention
established above. )

5 Generalized form-valued vector fields

These ideas of the previous sections can be extended to include vector fields
with generalized form—valued components.  Define such a type N vector
field on M by V = v/ 5., where the components v” are type N zero-forms
which transform as the components of a vector field . In the case considered
in this paper N =1 and

V=v— 0 = (v” +v0dz"m)— 0 _ =v+ (vfjalx"m)i

oxP oxP oxr’ (35)

where v = v” ddp. Hence V is determined by an ordinary vector field v and

a (1,1) type tensor field v25% ® dz” on M. The set of all such vector field

in M, V, is naturally a module Va)(M), over the generalized zero forms on
M, A?l)(M ).

The interior product of such a vector field V with a generalized p—form r

is a generalized (p — 1)—form on M, denoted iyr . Its definition is obtained
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by using the approach of the previous section and extending the formulae
there by considering the action of the odd vector field

v = (0 0207 p) (36)

acr
on the function v on M given in Eq.(31); that is ivr on M is defined to
correspond to the function on M given by

in = (Up+vgco )aip[ . Pas... ( a)Cal """ Cap_l' (p_i 1)!0a1-...ap+1 (xoz)coq """ Ca”“ll]-
(37)

It follows that on M the interior product with respect to V is given by the

formula

ivt =V’ o T. (38)

For p equal to minus one and zero

ivr = 0. (39)
iV(I)' = o,0%m,
and for p > 1

VT = i,T+hm = iyp + i,om-+ym, (40)
p

7y = (1) vgda(i s _p)
e
(p—1)!

This interior product satisfies the graded Leibniz rule

« Al... A
VY, Parg... apdr™tdx?.

. . P\ p,. 1

iv(ab) = (iva)b + (—1)"a(ivb), (41)
but does not in general anti-commute because the interior product on gen-
eralized zero forms need not be zero,

(iwoiy + ivoiw)r=(=1)""{[vgw’ + wiv’]|(i_o_p}m, (42)
where W=(w’ + w?dz°m)52;. However if
0 0
V=v +,=" m=—, W =w + 4,,=° mo (43)

1
—a 8
= = 2uﬁ7d93 dx”,
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where v, w € V(o)(M) and = is an ordinary vector-valued two-form, then
(iwoiv + iVOiw) =0. (44)

The Lie derivative of generalized forms with respect to a generalized form-
valued vector field V, which will be denoted £v, is defined by

£V:d0iv—|—’ivod. (45)

Calculation of the corresponding supercommutator on M gives the even
vector field £+ where

0 o 5 0 0
Lyr= (v" g g 46
vt (,U axa + axﬁc aca GUBC aCa) ( )
0
a0 Y /3
It follows that on M the Lie derlvatlve of a generalized p—form r on with
respect to a generalized form valued vector field V = v % is
£yr= (doiy + iyod)r (47)
0
= (vig o +dv)iz)r,
where v 2= ar denotes the expression
p'a a[pa:l ( )| dx®tdx p+m%[0alw%+l(l’ )]dz®t dx“*+m}.
(48)
Hence when p = —1 and r = om
£yr=v %m (49)
when p=0and r = p+ om,
9]
Lyr=L,p+[£,0+ vg(a—gﬁl — ¢0,)dx"Im, (50)
when p 2 1 and r = p + om,
€ (0%
Lyr= £vp—mvﬁpa>\2,__>\pdzﬂ5dx’\2...d:ﬂ’\f’ (51)
(=1 « 3 (=1)» 0vj
Heo o g e (p— 1)l g ode
- ]%ugam_,,A JdaPda™ ... dz v m.
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It follows from Egs.(41) and (45) that £v satisfies the Leibniz rule and
is a derivation of degree zero.

The Lie bracket of two generalized form-valued vector fields V = v*®
%and W =w" a — on M is the generalized form-valued vector field, [V, W],
defined by the relation

(fvfw — £w£v)1‘ = £[V,W}r‘ (52)
Then
[V, W] = [V,W]" 0 (53)
’ O
[V, W] = [v,w]" + {v* iw7 — wﬁ%vg + wg%vﬁ — vﬁaiawﬁ
+ vﬁ%w” — P aa v+ evﬁwﬁ — ewﬁvﬁ}d:c m,
where [v,w]75% is the ordinary Lie bracket of v and w. It follows from

Eq.(52) that the Lie bracket satisfies the Jacobi identity, if U, V and W are
generalized form-valued vector fields € Vq)(M)

U,[V,W]] + [V,[W,U]] + [W,[U, V]| = 0. (54)

All the operators d, iy , £y and [V, W] reduce to the usual operators when
acting on ordinary forms and vector fields.

Henceforth generalized form-valued vector fields will be referred to as type
N vector fields with N = 1 here. Ordinary vector fields are therefore type
N = 0 vector fields.

In [13] and [14] the concept of a generalized vector field was introduced
and explored. Such a vector field V' is determined by a pair consisting
of an ordinary vector field v € Vi,)(M) and a scalar field voon M. it is
straightfoward to see that such a generalized vector field is a type N = 1

vector field V =v + (v2dz” m)—p when the special choice

’Ugf _= (slg’vo_ (55)

is made. Moreover if V and W are two generalized vector fields, the inner
product, Iy , Lie derivative £y, and Lie bracket {V, W} introduced in [13] and
[14] are the same as the inner product iy, Lie Derivative £y and Lie bracket
[V, W] for the generalized form-valued vector fields V = (v” 4 vodz’m) =2
and W = (w” + wodz’m)5%.
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In concluding this section it should be noted that in [13] and [14] it was
observed that it was not possible, in general, to define a generalized vector
field which was a Lie derivative, £/, by using the equation

SV @) ZW — ZW 9] SV = ing. (56)

This result also applies to general vector fields € V(;)(A/) and is not surprising
in the light of the failure, as was noted above, of inner products to anti-
commute. A modified Lie derivative,£y of generalized forms which could
be used in Eq.(56) to define a (modified) Lie derivative of generalized vector
fields, EVW, was introduced. That construction will not be pursued here but
the following general observation can be made. Egs.(31) and (32) suggests
that for generalized forms the exterior derivative, d, splits naturally into two
exterior derivatives

d = d) + edy) (57)

where d = d) when € = 0 and d(;ym = 1, d;)a = 0 for any ordinary form
«. Similarly any type N = 1 vector field can be naturally written as the
sum of two vector fields v and V y)

0
V e pd a - = V . 58
v+(vg:cm)axp v+ V) (58)
Operators, such as the modified Lie derivative operator, can be constructed

by making use of these splittings. In fact the modified Lie derivative operator
of [13] and [14] is given by

Lyr = £yr — (d(o) o iv(l) + iv(l) o d(o))r, (59)

where V = (v + vodz’m) 2.
These ideas are illustrated in the following simple examples. First an ex-
ample using "pure" type N = 1 vector fields, for which V = (vgdxgm)% =

V(). is given. Second Hamiltonian type N = 1 vector fields are briefly
introduced and a simple special case is discussed.

Example 1 Pure type N = 1 vector fields:

Let J; be three (1, 1) type tensor fields which satisfy, as for example with
hyperkéahler metrics, the conditions J;J; = €;;;J; where i, j, k range from
one to three and ¢;j; is the totally skew symmetric Levi=Civita symbol. If
V, = Vq = %J%dxama% then [V, V,]| = eg;x V. Hence when € is zero
the vector fields commute and when € is non-zero the Lie brackets of the
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three pure type N = 1 vector fields V; = V) = iJ%d:Uama% satisfy the
so(3) Lie algebra condition, [V;, V,] = ;s V.

Example 2 Type N = 1 Hamiltonian vector fields

Let M be an even dimensional manifold with local coordinates {x“}. Let
s = 2+ Tm be a generalized symplectic two -form on M, that is a closed,
non-degenerate generalized two-form. Since s is required to be closed {2
and T must both be closed when ¢ = 0 and when ¢ is non-zero T = %dQ
and s =2 + %de. The two-form s is defined to be non-degenerate if and
only if € is non-degenerate. In this case both the components of s and
the ordinary two-form (2 are invertible (written as square matrices) and €2
defines an isomorphism between T'M and T*M; if Q) = %Qagdxadxﬁ then
conventionally Q€5 = 43, [21]. This definition permits non-zero pure
generalized form-valued vector field solutions W = W ), here termed kernel
vector fields, to the equation

in =0.

Let H =h + km be a generalized zero-form, then V is by definition a gen-
eralized form-valued Hamiltonian vector field corresponding to H when

iVHS = —dH.

Such a Hamiltonian vector field is also a Hamiltonian vector field for the
generalized zero-form H-+dL where L is any generalized minus one-form /m.
When H — H+dL, h— h+ ¢l and k — k 4+ dl.

Employing the decomposition of Eq.(58) and writing Vg = vy + Vg
the solutions of this equation, modulo arbitrary kernel vector fields, are given
in terms of components by

'U% = Qaﬁ(d{?g — h,g ),

U%ﬁ = Qm(k[ﬁ,ﬂ - %UIZT;LBV%
where T = %Tagdxadxﬁdﬂ, partial differentiation is denoted by a comma
and square brackets denote the totally skew part. By Eq.(52), and the fact
that £Lv,s =0, the Lie bracket of two generalized form-valued Hamiltonian
vector fields is also a generalized form-valued Hamiltonian vector field.

A case where there is much simplification arises when the ordinary two-
form 2 is itself symplectic, s =2 , and only generalized vector fields, defined
in Eq.(55), are considered. Then there are no kernel generalized vector fields.
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The consistency of the solutions above now requires that 2vy2 = dk and
that, in dimension greater than two, vy must be a constant. In symplectic
coordinates (p,, ¢*), with Q = dp,dq® and with the choices vy a constant and
k = 2ugp,dq® , the Hamiltonian generalized vector field is

VH = vy + VH(l)

oh & ok 9 9 9
- apa aqa - (aqa - 2€U0pa)a_pa - mUO(dq 8qa + dpaa_pa)'

Integral curves for vy satisfy the generalized Hamilton’s equations

dg®  Oh dpa__<8h
dt — Op,’ dt — “0g°

— 2€00Pa)-

For example, if h = 3!_,7[(¢")? + (pa)?] the solutions of the general-

ized Hamilton’s equations are determined by the solutions of the differential
equations

d> d a

an al TO=0
The appearance of the damping (or anti-damping) term when € is non-zero
appears to parallel the appearance of a mass term in field equations when ¢
is non-zero, as for example in [10].

The ideas above can be straightforwardly extended to type N = 2 gener-
alized forms and vector fields by considering functions on the Whltney sum,
MY of IITM and a reverse parity RY bundle over M, that is a trivial vector
bundle with fibre RY replaced by R™ . Natural local coordinates on MY
are (2%, ¢, u*), where p* (i = 1..N) are anti-commuting coordinates on R%¥ .
Type N generalized forms on M correspond, in the obvious generalization
of the type N = 1 case, to functions on MY which are polynomial in the
anticommuting coordinates. The exterior product of type N forms on M
corresponds to the product of such functions on M”. When the exterior
derivatives of the basis minus one-forms on M are given by dm’ = €', where
€' are constants, the exterior derivative of type N generalized forms on M
corresponds to the action of the vector field

— 2evg

on MY. The interior product iv of a generahzed type N form by a type
N generalized vector field V = v* a , where the components v are type N
generalized zero-forms, corresponds to the action of the vector field v 84“ on
the corresponding functions on MY,
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The ideas of the previous sections also extend straightforwardly to gener-
alized form-valued tensor fields and geometrical objects. Such an extension
is outlined in the next section.

6 Type N = 1 generalized affine and metric
connections

In this section the formalism above will be applied and the tensor calculus
of generalized affine connections and metrics, when N = 1, will be outlined.
The definition of a generalized affine connection is the same as the defini-
tion of an ordinary affine connection except that ordinary forms, including
zero forms, are replaced by generalized forms. If {U;} is a covering of an
n—dimensional manifold M by coordinate charts, each with coordinates {x¢}
then a generalized affine connection A is an assignment of a n X n matrix-
valued generalized one-form, with (u,v) entry A’ | to each set U; and such
that on U; N U, , for all I and J,

AY, = (G)edGry) + (G AL G, (60)
where 4
T

Gt =—L. 61

1Jy a!)ﬁ'ij] ( )

The curvature two-form F; is the generalized form

F/ —dA" + Al AL (62)

v p
and under the transformation in Eq.(60)
Fy, =G )F LGy

On any coordinate chart such as U; the connection one-form A’ can be

written as
Af, = af, + Br,m, (63)

where o, and 3, are respectively ordinary matrix valued one-forms and the
curvature two-form is then

¥y, = Fp, +efr, + DPp,m, (64)
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where

fﬁ/ = da?y + a?paﬁy’ (65)

Dﬁﬁx = dﬁ?y + O/Ilpﬁlpy - B?paﬁy'

It follows from the above that the locally defined ordinary one-forms o/, and
curvature two-forms F7, , patch together to define global connection and cur-
vature forms, o and F , of an ordinary affine connection D. The ordinary
two-forms (7, transform as (1, 1) type tensor valued two-forms. Henceforth
connections on M will be discussed and the subscripts corresponding to co-
ordinate charts will be dropped.

The curvature satisfies the Bianchi identities

DF! =dF" + AKF) — FYA) =0, (66)

where here D denotes the covariant exterior derivative of a type N = 1
valued generalized form. For a G) —tensor valued generalized p-form P

DP! =dP" + A4P) + (— 1) PLA). (67)

The covariant derivative of a generalized zero-form is the exterior derivative.
If V=v’5% = (v + vfdz"m) 52, the covariant derivative is

OzP?
VV = DV“(X)i = (dv* + A“V”)@i (68)
Oz g o+’
where
Dv#=Dv" — evhdz” + [D(vdx") + Sv"|m, (69)

and D and D are the covariant exterior derivatives with respect to A and «
respectively. The covariant derivative with respect to a type N = 1 vector
field W is the generalized form-valued vector field

%)
VwV = iy ((dv* + AGv7)]

Pt (70)

The covariant derivative is extended to type N = 1 generalized form -valued
tensor fields by using the linearity and product rules satisfied by ordinary
covariant derivatives and tensor fields.

A field V is a parallel vector field if VV = 0, that is
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Dv* — evtdz” =0, (71)
D(vhdz") + phv” = 0.

and such a system of equations is completely integrable if and only if the
generalized curvature F is zero, that is when

-1} (72)

DB = 0.

A generalized metric can be defined by straightforwardly extending the
definition of an ordinary metric to encompass generalized forms. A general-
ized metric g is a smooth symmetric bilinear function on V(1) ,(M) at each
pe M

g(V,W)=g, viw", (73)
Suv = Bups

where the components are generalized zero-forms and V and W are any type
N =1 vector fields as above. If

8w = Y + XM, (74)

where 7, and x,, are ordinary zero and one-forms respectively, the gen-
eralized metric is said to be non-degenerate when det(y,,) is non-zero. A
non-degenerate metric has inverse

gr =" — x"™'m (75)

where v+, = 08 and x* = 7y x,,. Henceforth only non-degenerate
metrics will be considered.
The expanded form of g, v*w" is

g VW =y, 0" + (vl + wu vl + Xuw,vtw” ) dz’m, (76)

where here and henceforth indices are lowered (and raised) by using v, and
its inverse and X, = Xuvpdx’.

If A is a generalized connection and g then A is a generalized metric
connection when the covariant derivative of g is zero. This compatibility
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condition may be expressed as the vanishing of the generalized non-metricity
one-form Q,, where

Dgu,, - dgm/ - gu)\Al),\ - gXVA;); = Q;w- (77)
Here
Qm/ =4, — Xw T [DXW - (ﬁuu + @/u)]ma (78)
DXy = dxpw — O‘;);X)\u - O‘z)j\X/M,

and g, is the non-metricity one-form for o/ and v,,,

4 = Dy = dypw — ’Yu/\az)/\ - ’V)\uai- (79)
When e =0, Q,, = 0 if and only if

¢, =0, (80)
DX;W = (ﬁuy + 6vu)>

that is a is a metric connection for the metric v, dz"dz” and

~ 1
Al =af + (B + 5 Dxt)m (31)

where gfj = %7”/\(5/\1/ - /Bl/>\)'
When € # 0, Q,, = 0 if and only if

8uv = Vv T 6_1quum7 (82)
~ 1
A=l B - (L Ffm

Hence there is the following extension of the fundamental theorem of Rie-
mannian geometry.

Let g, = v + X,wm be a generalized metric. Then if AY = o + S/m
is a generalized connection where o/ has zero torsion and 3, = (3,

(i) When € = 0 the only such connection which is metric, that is Dg,,, =
0, is A% = o# + 1Dx#m where o is the unique Levi-Civita connection
for the metric v,,dxz*dz”. In this case the generalized curvature form is
Fy = F' + 5(F{0 — XAF))m.
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(ii) When € # 0 the only such connections which are metric are given by
Al = ol — i(]—"‘l‘, + F/)m with curvature two-forms F# = %(.7—"‘1‘, - FH) —
i(%})\f)\u + qukfu)\>m~

Note that in the latter case if the generalized metric is an ordinary metric,
that is g, = ., then the only such generalized connection which is metric
is A¥ = o¥ with generalized curvature F¥ = F*#  where o is the unique

Levi-Civita connection for the metric vy, dz#dz".

7 Discussion

In this paper type N = 1 generalized form-valued vector fields have been
constructed and it has been shown that generalized vector fields constitute
a sub-class of such fields Generalized affine connections and metrics have
also been introduced. It is a straightforward matter to extend the results
in this paper to general vector bundles, generalized form-valued sections and
generalized connections. The latter, discussed in earlier papers, bear a formal
similarity to connections used in the higher gauge theories reviewed in [22].
Those generalized connections have been used to formulate Lagrangian field
theories and a similar use can be made of the generalized affine connections
and metrics introduced here.

Acknowledgement: I would like to thank Alice Rogers for some useful
discussions.

8 Appendix: Exterior derivatives of type N=1
forms

The exterior derivative d : A (M) — A%l (M) for ordinary forms is uniquely
determined by the four conditions [15]

(i) dla+ ) = da + dp.

(ii) for f € f € A?O)(M ), df has its usual meaning as the differential of f,

(i) dod = 0,

(iv) d(af) = dap + (—1)PadS, where « is a p—form.

Exterior derivatives, d : A{y, (M) — Af;;‘ (M), for generalized forms of
type N greater than zero, also satisfy these conditions but they are not
uniquely determined by them. The aim of this appendix is to discuss this

point by developing previous work, [6], and constructing global solutions of
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the differential ideal defining the exterior derivative. This will be done here
for type N = 1 forms since they can be treated most easily and completely.

Let d : A{y(M) — Af;;l(M ) be an exterior derivative for type N = 1
forms on an on a real n—dimensional differentiable manifold M. Assume
that m is a non-zero minus one-form and that any type N = 1 generalized

p—form, ac Afl)(M ), may be expressed as
a=d4+"am, (83)

where the ordinary forms b and "&" are respectively of degree p and p+1 on
M, and p can take integer values from —1 to n. All the forms are assumed
to obey the usual rules of exterior algebra and calculus and the exterior
derivative of m is required to be a type N = 1 generalized zero-form.
It follows that
dm =19 — pm (84)

where 9 is an ordinary zero-form and ¢ is an ordinary one-form on M. Then
d*m = 0 if and only if

dd + 9o =0, (85)
de = 0.

The solutions of this closed differential ideal of ordinary forms determine the
possible exterior derivatives d. The exterior derivative of any type N = 1

form A is then given by

dh = db + (—1Pa + [d"8 — '8 m. (86)

Consider now the consequences of these global assumptions. In a con-
tractible open set U on M the closed form ¢ is exact. Therefore in U,

@ = dE, (87)
U = 7exp(=§),

for some constant 7 and some function £. Hence, in U
dm = 7exp(—¢) — dém. (88)

The pair (7,£) is not unique since there is the freedom 7 — 7Texp x, £ — &+,
where y is a constant.
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Consider next a good covering of M by a family of (contractible) open
sets {Ur}. By Eqgs.(87) and (88) there are constants and functions (77, &)
such that

p = d¢, (89)
¥ = 17 exp(—¢r),
dm = 7y exp(—¢{r) — d§m,

on U; and similarly on each set in the covering. On the intersection of any
two sets in the covering, U; and U} say, it follows from Eq.(89) that
TI exp(—&) =TyJ exp(—&), (90)
d&r = d§,.

Hence on any intersection such as Uy N U,

&r— &5 =117, (91)
TT =TJj€XPTIJ,

for constants 7;; satisfying 7;; = —7;;. Consistency on triple intersections,
UrNU; N Uk requires that

Trg + Ty + 71 = 0. (92)

Therefore, on Uy

dh = db + (—1) i exp(—&)'a + |76 — dea |m, (93)
and similarly on all the sets in the open covering.
From Eq.(90) it follows that if 7; is zero so is 7; and then on each set U;

in the open cover
dm = —d¢;m (94)

and ¥ = 0 on M. Call this case (i). On the other hand if 7; is non-zero in
U; then, from Eq.(90) 7, is non-zero in U; and hence ¥ must be non-zero in
M. Call this case (ii).

1

Now consider rescalings of m and ’&'. On each open set of the cover such
as Uy let ¢; be a non-zero constant, and on any intersection such as Uy NU;
let these constants be related by

cr = CjexpTrJ. (95)
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On Uy let

m; = cl_l exp(&7)m, (96)
ptl +1
ar=cy exp(—&)pa , (97)

with similar scalings on the other sets in the open cover. Then

p+1
A=+ amy, (98)
dﬁl[ = T[C?l,
p p 1 7113:':1 pil ~
da = [da+ (-1 et @ ] +d & ymy,

on U; and similarly on all the sets in the cover. It follows from Eq.(90) and
the following equations that on any intersection such as U; N U;
~ IO S e
my=my, aj= Qayj, (99)
- ~ Pl Pl
dmI:de,da[:daJ,

and there is consistency on triple intersections.
In case (i), for all ¢;

dm; =0, (100)
P p  PEL

da=doa+da 7my (101)

In case (ii), making the choice of constants ¢y
cr =Tt (102)

in U , where € is a real non-zero constant, gives
dm; = e, (103)

p p+1 p+1

da =[dh+ (-1 e | +da my,

and similarly for all the open sets in the cover. When ¢ = 1 this choice
corresponds to the choice of what has been termed a canonical basis on M.
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