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Abstract: Vector fields with components which are generalized zero-
forms are constructed. Inner products with generalized forms, Lie derivatives
and Lie brackets are computed. The results are shown to generalize those
reported for generalized vector fields. Generalized affine connections and
metrics are defined and the fundamental theorem of Riemannian geometry
is extended. The global structure of the exterior derivative of generalized
forms is investigated.
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1 Introduction

Generalized forms have been applied in a number of geometrically related
areas of physics. By extending the algebra and calculus of ordinary differ-
ential forms new points of view about a number of different geometrical and
physical systems have been obtained. For example in twistor theory forms of
negative degree were introduced in order to try to extend twistor results on
half-flat space-times and to associate an abstract twistor space with general
analytic solutions of Einstein’s vacuum field equations [1] [2] [3], field theo-
ries, such as BF, Yang- Mills and gravity theories have been reformulated as
generalized topological field theories with generalized Chern-Pontrjagin and
Chern-Simons forms as Lagrangians [4] [5], [6], [7] ,and generalized differen-
tial forms have been related to forms on path space [8]. Further applications
are contained in a series of papers, [9] to [12], [6] and [7], devoted to the
development of the formalism of generalized forms. Generalized differen-
tial forms were extensively studied in these latter papers but they dealt only
with ordinary vector fields. Some interesting progress going beyond ordinary
vector fields was made in [13] and [14] where the concept of a generalized
vector field was introduced. In this paper the study of vector fields is con-
tinued and their work is extended. First a dictionary between the algebra
and calculus of certain functions and vector fields on a superspace and the
algebra and calculus of generalized forms and vector fields is established.
This dictionary is not only useful in its own right but it also facilitates the
introduction of the concept of a generalized form-valued vector field. In
the case considered here such an object is determined by an ordered pair
consisting of of an ordinary vector field and a (1, 1) type tensor field. This
concept includes generalized vector fields as a special case and provides an
improved understanding of their properties. The introduction of generalized
form-valued vector fields also enables generalized metrics and affine connec-
tions to be defined by constructions which can be extended to more general
connections.
A brief review of the algebra and differential calculus of generalized forms

needed in this paper is given in the second section. Different types of gen-
eralized differential forms, on an n dimensional manifold M , are labelled by
a non-negative integer N . In this paper only the case where N = 1 is con-
sidered but the results are easily extendible to N � 2. A type N = 1
generalized p−form is defined by an ordered pair consisting of two ordinary
forms of degrees p and p + 1 respectively, where −1 � p � n. The module
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of type N = 1 generalized p−forms on M is denoted Λp

(1)(M). The exterior
product for generalized forms makes the vector space of type N = 1 forms at
a point x inM , Λ•(1)(x) = ⊕

p=n
p=−1Λ

p

(1)(x), into an associative algebra, in fact a
super-commutative graded algebra. Generalized forms of degree zero form a
commutative ring with 1 �= 0. The graded module, and super-commutative
graded algebra over the ring of smooth functions, on M is equipped with an
exterior derivatives, d : Λp

(1)(M) → Λp+1(1) (M), a super-derivation of degree
one. While both the exterior algebra and differential calculus satisfied by
generalized forms are similar to the algebra and calculus of ordinary forms
there are some differences. For instance, generalized forms of degree p = −1
are allowed and the generalized de Rham cohomology can be different from
the de Rham cohomology of ordinary forms.
The actions of ordinary vector fields on generalized forms onM presented

previously, [10], are summarized in section three. In the fourth section the
algebra and calculus of generalized forms and the actions of ordinary vector
fields on M are represented on the Whitney sum of a reverse parity trivial
line bundle and the reverse parity tangent bundle over M . This extends to
generalized forms a known approach to ordinary differential forms, [16]. This
point of view is employed in the fifth section where generalized form-valued
vector fields are introduced and their properties explored. The definitions of
the interior products and Lie derivatives of generalized forms with respect to
such vector fields and the definition of a Lie bracket are given, extending the
results of section three from ordinary vector fields to generalized form-valued
vector fields. Generalized vector fields, which were introduced in [13] and [14]
and applied to the Hamiltonian formalism for a free relativistic particle, are
discussed and shown to form a sub-class of generalized-form valued vector
fields. Two examples of the use of generalized form-valued vector fields
are presented, one introducing generalized form-valued Hamiltonian vector
fields. An application is given in the sixth section where generalized form-
valued vector fields are used in the construction of the tensor calculus of
generalized affine connections and metrics. The compatibility conditions of
generalized affine connections and generalized metrics are presented and an
extension of the fundamental theorem of Riemannian geometry is obtained.
The seventh section contains a brief summary of the results and an outline of
ways in which they can be used and developed. Finally there is an appendix
in which the global structure of exterior derivatives of type N = 1 forms is
discussed.
The results in this paper can apply to manifolds and geometrical objects
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that are real or complex but in this paper it will be assumed that the geometry
is real, all geometrical objects are smooth and M is an n−dimensional real,
smooth, orientable and oriented manifold. Bold-face Roman letters are used
to denote generalized forms and generalized vector fields, ordinary forms on
M are usually denoted by Greek letters and ordinary vector fields on M by
lower case Roman letters. Occasionally the degree of a form is indicated
above it. The exterior product of any two forms, for example α and β, is

written αβ, and as usual, any ordinary p−form
p
α, with p either negative or

greater than n, is zero. The Einstein summation convention is used.

2 Algebra and calculus of generalized forms

The algebraic and differential properties of generalized forms are outlined in
this section using the notation of [6] and [7]. In this paper generalized forms
will be expressed in terms of a minus one-form which is linearly independent
of ordinary forms onM , [6]. Hence a basis for type N = 1 generalized forms
consists of any basis for ordinary forms on M augmented by a minus one-
form m. Apart from having a degree of minus one the latter has the same
algebraic properties as an ordinary exterior form. It satisfies the ordinary
distributive and associative laws of exterior algebra and the exterior product
rule

p
αm = (−1)pm

p
α; m2 = 0, (1)

together with the condition of linear independence. Thus, for a given choice

of m, a generalized p-form,
p
a ∈ Λp

(1), can be written as

p
a =

p
α+

p+1
α m, (2)

where
p
α, and

p+j
α are, respectively, ordinary p− and (p+1)−forms and p can

take integer values from −1 to n. At a point x inM the generalized p−forms
of type N=1, Λp

(1)(x), form a real vector space of dimension
(1+n)!

(1+p)!(n−p)!
. The

dimension of Λ•(1)(x) = ⊕
p=n
p=−1Λ

p

(1)(x) is 2
1+n.

If ϕ is a smooth map between manifolds P and M, ϕ : P →M, then the
induced map of type N = 1 generalized forms, ϕ∗(1) : Λ

p

(1)(M) → Λp

(1)(P ), is
the linear map defined by using the standard pull-back map, ϕ∗, for ordinary
forms

ϕ∗(1)(
p
a) = ϕ∗(

p
α) + ϕ∗(

p+1
α )m, (3)
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and ϕ∗(1)(
p
a
q

b) = ϕ∗(1)(
p
a)ϕ∗(1)(

q

b). Hence ϕ∗(1)(m) =m.
Henceforth in this paper, in addition to assuming that the exterior deriv-

ative of generalized forms satisfies the usual properties, it is assumed that

dm = ε, (4)

where ε denotes a real constant. If m �→m̃= µm, where µ is a non-zero

function on M , then
p
a =

p
α +

p+1
α m =

p
α +

p+1

α̃ m̃, where
p+1

α̃ = µ−1
p+1
α . Fur-

thermore dm̃=ε̃, where ε̃ is also a real constant, if and only if dµ = 0 and
then ε̃ = µε.

The exterior derivative of a type N = 1 generalized form
p
a is then

d
p
a = [d

p
α+ (−1)p+1ε

p+1
α ] + d

p+1
α m, (5)

where d is the ordinary exterior derivative when acting on ordinary forms.
The exterior derivative d : Λp(1)(M)→ Λp+1

(1) (M) is an anti-derivation of degree
one,

d(
p
a
q

b) = d
p
a
q

b+ (−1)p
p
ad

q

b, (6)

d2 = 0.

and (Λ•(N)(M), d) is a differential graded algebra. The exterior derivative is
discussed in more detail in the appendix.

3 Vector fields and type N = 1 forms

In this section the definitions of the inner product and Lie derivative of type
N = 1 forms by ordinary vector fields introduced in [10] will be summarized.
Let v be an ordinary vector field tangent to M, v ∈ V(o)(M), where V(o)(M)
is the module of ordinary vector fields over C∞(M), the real valued functions

on M . Let the generalized p-form
p
a and q-form

q

b be given, respectively,

by
p
α +

p+1
α m and

q

β +
q+1

β m. The inner product or contraction operator on
generalized forms, iv : Λ

p

(1) → Λp−1(1) , for −1 � p � n, is defined in terms of
the inner product for ordinary forms by

iv
p
a = iv

p
α+ (iv

p+1
α )m. (7)
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Since
−1
α = 0, and iv

0
α = 0, iv

−1
a = 0 and iv

0
a = (iv

1
α)m. Furthermore, for

any two vector fields v and w ∈ V(o)(M)

iw(iv
p
a) + iv(iw

p
a) = 0. (8)

It is a straight forward matter to show that Eq.(7) implies that

iv(
p
a
q

b) = (iv
p
a)

q

b+ (−1)p
p
a(iv

q

b), (9)

that is

iv(
p
a
q

b) = iv(
p
α
q

β) + [iv(
p
α
q+1

β ) + (−1)qiv(
p+1
α

q

β)]m,

The Lie derivative with respect to v, $v is defined by

$v

p
a = ivd

p
a+ d(iv

p
a), (10)

from which it follows that d ◦$v

p
a = $v ◦ d

p
a.

A calculation then shows that

$v

p
a = $v

p
α+ ($v

p+1
α )m. (11)

A direct consequence of Eqs.(9) and (10) above is that $v satisfies the Leibniz
rule

$v(
p
a

q

b) = ($v

p
a)

q

b+
p
a$v(

q

b), (12)

A couple of important differences from results for ordinary forms should be
noted,

$v

−1
a = iv(d

0
α)m, (13)

and
iv(d

0

a)=ivd
0
α− εiv

1
α+ ivd

1
αm, (14)

In contrast to the case for ordinary zero-forms, the latter is not equal to the
Lie derivative for

$v

0
a = ivd

0
α+ [ivd

1
α+ d(iv

1
α)]m. (15)

If v and w are vector fields in M it follows from the definitions above that

($v ◦ iw − iw ◦$v)
p
a = i[v,w]

p
a, (16)
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($v ◦$w −$w ◦$v)
p
a = $[v,w]

p
a, (17)

where [v, w] denotes the Lie bracket of the vector fields v and w. The latter
type of equation will be used in section five to define a generalization of the
Lie bracket.
In summary, with these definitions, Λ(1) is a graded algebra and there is

a natural grading of these linear operators on Λ(M), d is degree 1, $v is of
degree 0 and ιv is of degree −1. These derivations span a super Lie algebra
and satisfy the H.Cartan formulae, [15],

d ◦ d = 0, iv ◦ iw + iw ◦ iv = 0, (18)

$v ≡ d ◦ iv + iv ◦ d⇒ d ◦$v −$v ◦ d = 0.

$v ◦$w −$w ◦$v = $[v,w], $v ◦ iw − iw ◦$v = i[v,w],

for all vector fields v and w ∈ V(o)(M).

4 Representation of the algebra and calculus

of generalized forms

The algebra and calculus of ordinary differential forms onM can be expressed
in terms of functions and vector fields on the reverse parity tangent bundle,
ΠTM , of M , [16]. A recent exposition containing further references can be
found in [17]. A sample of texts where superspace calculations are discussed
is [18], [19], [20].
The reverse parity tangent bundle is just the ordinary tangent bundle

with the parity reversed in the fibre directions. If xα , α = 1....n = dimM ,
denote local coordinates on M then local coordinates on ΠTM are obtained
by adding to these n anticommuting fibre coordinates. The latter are ob-
tained by replacing the natural tangent bundle fibre coordinates with n anti-
commuting (fermionic) coordinates with the same transformation properties.
These can be denoted by the symbols dxα or, as will be done here for no-
tational clarity by ζa. Then an ordinary p−form ρ on M with coordinate
basis components ρα1....αp(x

α).

ρ =
1

p!
ρα1....αp(x

α)dxα1.....dxαp , (19)
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corresponds to, r, a homogeneous polynomial of degree p in the anticommut-
ing fibre coordinates on ΠTM

r =
1

p!
ρα1....αp(x

α)ζα1.....ζαp. (20)

The exterior product of ordinary forms p− and q−forms on M corre-
sponds to the product of such functions (which are homogeneous polynomials
of respective degrees p and q in the anticommuting coordinates) on ΠTM .
The exterior derivative of ordinary p−forms onM , where p > 0, corresponds
to the action of the odd vector field ζα ∂

∂xα
on the corresponding functions on

ΠTM and the correspondence can be written as

dρ↔ ζα
∂r

∂xα
. (21)

The interior product, iv, of an ordinary p− form ρ on M by a vector field
v= vα ∂

∂xα
∈ V(o)(M), corresponds to the action of the odd vector field vα ∂

∂ζα

on the function r in ΠTM ; the correspondence can be written as

ivρ↔ vα
∂r

∂ζα
(22)

For example, the local coordinate expression for the action of a vector field
v on a zero-form ρ on M is

v(ρ) = ivdρ, (23)

and using the correspondences above

v(ρ)↔ vα
∂

∂ζα
(ζb

∂r

∂xb
). (24)

The Lie derivative $v on M corresponds to the even vector field, [d, iv],
on ΠTM where [., .] denotes the super Lie bracket of the odd vector fields d
and iv or equivalently the supercommutator of the differential operators on
ΠTM ,

$v ↔ [d, iv] = d ◦ (iv) + iv ◦ d, (25)

[d, iv]r = vα
∂r

∂xα
+

∂vα

∂xβ
ζβ

∂r

∂ζα
. (26)
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Henceforth the same notation will be used for corresponding operators
on M and reverse parity bundles. It will be clear from the context which is
meant, for example on ΠTM

$v = [d, iv]

$vr = vα
∂r

∂xα
+

∂vα

∂xβ
ζβ

∂r

∂ζα

and correspondingly on M

$vρ = [d ◦ (iv) + iv ◦ d]ρ.

If w = wα ∂
∂xα
is a another vector field ∈ V(o)(M), calculation of the super

commutator on ΠTM of $v and $w gives

[ $v,$w] = $v ◦$w −$w ◦$v = $[v,w]. (27)

Similarly computing the supercommutator on ΠTM gives

[$v, iw] = $v ◦ iw − iw ◦$v = i[v,w], (28)

where [v, w] is the Lie bracket of v and w. By the correspondences the same
results hold for forms on M .
It is a straightforward matter to extend these ideas to generalized forms

of all types on M . Here only type N = 1 forms will be considered in
detail. Let M̃ be the Whitney sum of ΠTM and a trivial reverse parity line
bundle over M , that is a trivial line bundle with fibre R1 replaced by R0|1,
and let R0|1 have anti-commuting coordinate µ . Local coordinates for M̃
can then be chosen to be the commuting coordinates xα together with the
anti-commuting coordinates ζa = dxα and µ. If

r = ρ+ σm (29)

is a generalized p−form onM and the ordinary p− and (p+1)−forms ρ and
σ have respective coordinate basis components ρα1....αp and σα1....αp+1 and

dm = ε, (30)

where ε is a constant, then r corresponds to the function

r =
1

p!
ρα1....αp(x

α)ζα1.....ζαp +
1

(p+ 1)!
σα1....αp+1(x

α)ζα1.....ζαP+1µ (31)
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on M̃ . The exterior product of generalized forms in M corresponds to the
product of such functions in M̃ . The exterior derivative of a generalized
form r in M , dr, corresponds to the action of the odd vector field on the
corresponding function in M̃

d : r→ (ζα
∂

∂xα
+ ε

∂

∂µ
)r. (32)

The interior product, ivr, of a generalized p−form r on M by a vector field
v= vα ∂

∂xα
∈ V(o)(M) is the generalized (p− 1)−form

ivr = ivρ+ (ivσ)m (33)

which corresponds to vα ∂r
∂ζα
on M̃ , i.e. on M̃

iv : r→ vα
∂r

∂ζα
. (34)

(dr = (ζα ∂
∂xα

+ ε ∂
∂µ
)r and ivr = vα ∂r

∂ζα
in accordance with the convention

established above.)

5 Generalized form-valued vector fields

These ideas of the previous sections can be extended to include vector fields
with generalized form-valued components. Define such a type N vector
field on M by V = vρ ∂

∂xρ
where the components vρ are type N zero-forms

which transform as the components of a vector field . In the case considered
in this paper N = 1 and

V = vρ
∂

∂xρ
= (vρ + vρσdx

σm)
∂

∂xρ
= v + (vρσdx

σm)
∂

∂xρ
, (35)

where v = vρ ∂
∂xρ
. Hence V is determined by an ordinary vector field v and

a (1, 1) type tensor field vρσ
∂
∂xρ
⊗ dxσ on M . The set of all such vector field

in M , V, is naturally a module, V(1)(M), over the generalized zero forms on
M , Λ0(1)(M).
The interior product of such a vector field V with a generalized p−form r

is a generalized (p− 1)−form on M , denoted iVr . Its definition is obtained
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by using the approach of the previous section and extending the formulae
there by considering the action of the odd vector field

iV = (v
ρ + vρσζ

σµ)
∂

∂ζρ
(36)

on the function r on M̃ given in Eq.(31); that is iVr on M is defined to

correspond to the function on M̃ given by

iVr = (v
ρ+vρσζ

σµ)
∂

∂ζρ
[
1

p!
ρα1....αp(x

α)ζα1.....ζαp+
1

(p+ 1)!
σα1....αp+1(x

α)ζα1.....ζαp+1µ].

(37)
It follows that on M the interior product with respect to V is given by the
formula

iVr = v
ρi ∂

∂xρ
r. (38)

For p equal to minus one and zero

iV
−1
r = 0. (39)

iV
0
r = σαv

αm,

and for p � 1

iVr = ivr+
p
γm = ivρ+ ivσm+

p
γm, (40)

p
γ = (−1)p−1vαβdx

β(i ∂
∂xα

ρ)

=
(−1)p−1

(p− 1)!
vαλ1ραλ2....λpdx

λ1...dxλp.

This interior product satisfies the graded Leibniz rule

iV(
p
a
q

b) = (iV
p
a)

q

b+ (−1)p
p
a(iV

q

b), (41)

but does not in general anti-commute because the interior product on gen-
eralized zero forms need not be zero,

(iW◦iV + iV◦iW)r=(−1)
p−1{[vαβw

β + wα
βv

β](i ∂
∂xα

ρ}m, (42)

whereW=(wρ + wρ
σdx

σm) ∂
∂xρ
. However if

V=v + ivΞ
αm

∂

∂xα
,W =w + iwΞ

αm
∂

∂xα
(43)

Ξα =
1

2
Ξαβγdx

βdxγ ,

11



where v, w ∈ V(0)(M) and Ξ is an ordinary vector-valued two-form, then

(iW◦iV + iV◦iW) = 0. (44)

The Lie derivative of generalized forms with respect to a generalized form-
valued vector field V, which will be denoted $V, is defined by

$V = d ◦ iV + iV ◦ d. (45)

Calculation of the corresponding supercommutator on M̃ gives the even
vector field $V where

$Vr= (v
α ∂

∂xα
+

∂vα

∂xβ
ζβ

∂

∂ζα
− εvαβ ζ

β ∂

∂ζα
)r (46)

+ (vαβ ζ
βµ

∂

∂xα
+

∂vαβ

∂xγ
ζγζβµ

∂

∂ζα
)r.

It follows that onM the Lie derivative of a generalized p−form r on with
respect to a generalized form valued vector field V = vα ∂

∂xα
is

$Vr= (d◦iV + iV◦d)r (47)

= (vα
∂

∂xα
+ d(vα)i ∂

∂xα
)r,

where vα ∂r
∂xα
denotes the expression

vα{
1

p!

∂

∂xa
[ρα1....αp(x

α)]dxα1.....dxαp+
1

(p+ 1)!

∂

∂xa
[σα1....αp+1(x

α)]dxα1.....dxαp+1m}.

(48)
Hence when p = −1 and r = σm

$Vr= v
α ∂σ

∂xα
m, (49)

when p = 0 and r = ρ+ σm,

$Vr= $vρ+ [$vσ + vαβ (
∂ρ

∂xα
− εσα)dx

β]m, (50)

when p � 1 and r = ρ+ σm,

$Vr= $vρ−
ε

(p− 1)!
vαβραλ2...λpdx

βdxλ2 ...dxλp (51)

+[$vσ +
(−1)p

p!
vαβ

∂

∂xα
ρλ1...λp +

(−1)p

(p− 1)!

∂vαβ

∂xλ1
ραλ2...λp

−
ε

p!
vαβσαλ1...λp]dx

βdxλ1...dxλpm.
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It follows from Eqs.(41) and (45) that $V satisfies the Leibniz rule and
is a derivation of degree zero.
The Lie bracket of two generalized form-valued vector fields V = vα

∂
∂xα
andW = wα ∂

∂xα
onM is the generalized form-valued vector field, [V,W],

defined by the relation

($V$W −$W$V)r = $[V,W]r. (52)

Then

[V,W] = [V,W]γ
∂

∂xγ
(53)

[V,W]γ = [v, w]γ + {vβ
∂

∂xβ
wγ
α − wβ ∂

∂xβ
vγα + w

γ
β

∂

∂xα
vβ − v

γ
β

∂

∂xα
wβ

+ vβα
∂

∂xβ
wγ − wβ

α

∂

∂xβ
vγ + εv

γ
βw

β
α − εw

γ
βv

β
α}dx

αm,

where [v, w]γ ∂
∂xγ
is the ordinary Lie bracket of v and w. It follows from

Eq.(52) that the Lie bracket satisfies the Jacobi identity, if U, V andW are
generalized form-valued vector fields ∈ V(1)(M)

[U,[V,W]] + [V,[W,U]] + [W,[U,V]] = 0. (54)

All the operators d, iV , £V and [V,W] reduce to the usual operators when
acting on ordinary forms and vector fields.
Henceforth generalized form-valued vector fields will be referred to as type

N vector fields with N = 1 here. Ordinary vector fields are therefore type
N = 0 vector fields.
In [13] and [14] the concept of a generalized vector field was introduced

and explored. Such a vector field V is determined by a pair consisting
of an ordinary vector field v ∈ V(o)(M) and a scalar field v0 on M . it is
straightfoward to see that such a generalized vector field is a type N = 1
vector field V =v + (vρσdx

σm) ∂
∂xρ
when the special choice

vαβ = δαβv0. (55)

is made. Moreover if V and W are two generalized vector fields, the inner
product, IV , Lie derivative LV and Lie bracket {V,W} introduced in [13] and
[14] are the same as the inner product iV, Lie Derivative $V and Lie bracket
[V,W] for the generalized form-valued vector fields V = (vρ + v0dx

ρm) ∂
∂xρ

andW = (wρ + w0dx
ρm) ∂

∂xρ
.
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In concluding this section it should be noted that in [13] and [14] it was
observed that it was not possible, in general, to define a generalized vector
field which was a Lie derivative, LVW , by using the equation

LV ◦ iW − iW ◦ LV = iLVW . (56)

This result also applies to general vector fields ∈ V(1)(M) and is not surprising
in the light of the failure, as was noted above, of inner products to anti-
commute. A modified Lie derivative,L̂V of generalized forms which could
be used in Eq.(56) to define a (modified) Lie derivative of generalized vector

fields, L̂VW , was introduced. That construction will not be pursued here but
the following general observation can be made. Eqs.(31) and (32) suggests
that for generalized forms the exterior derivative, d, splits naturally into two
exterior derivatives

d = d(0) + εd(1) (57)

where d = d(0) when ε = 0 and d(1)m = 1, d(1)α = 0 for any ordinary form
α. Similarly any type N = 1 vector field can be naturally written as the
sum of two vector fields v and V(1)

V = v + (vρσdx
σm)

∂

∂xρ
= v +V(1). (58)

Operators, such as the modified Lie derivative operator, can be constructed
by making use of these splittings. In fact the modified Lie derivative operator
of [13] and [14] is given by

L̂Vr = $Vr− (d(0) ◦ iV(1)
+ iV(1)

◦ d(0))r, (59)

where V = (vρ + v0dx
ρm) ∂

∂xρ
.

These ideas are illustrated in the following simple examples. First an ex-
ample using "pure" type N = 1 vector fields, for which V = (vρσdx

σm) ∂
∂xρ

=
V(1). is given. Second Hamiltonian type N = 1 vector fields are briefly
introduced and a simple special case is discussed.
Example 1 Pure type N = 1 vector fields:
Let Ji be three (1, 1) type tensor fields which satisfy, as for example with

hyperkähler metrics, the conditions JiJj = εijkJk where i, j, k range from
one to three and εijk is the totally skew symmetric Levi=Civita symbol. If
Vi = Vi(1) =

1
2
Jα
iβdx

αm ∂
∂xα
then [Vi,Vj ] = εεijkVk. Hence when ε is zero

the vector fields commute and when ε is non-zero the Lie brackets of the
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three pure type N = 1 vector fields Vi = Vi(1) =
1
2ε
Jα
iβdx

αm ∂
∂xα
satisfy the

so(3) Lie algebra condition, [Vi,Vj] = εijkVk.
Example 2 Type N = 1 Hamiltonian vector fields
LetM be an even dimensional manifold with local coordinates {xα}. Let

s = Ω + Υm be a generalized symplectic two -form on M, that is a closed,
non-degenerate generalized two-form. Since s is required to be closed Ω
and Υ must both be closed when ε = 0 and when ε is non-zero Υ = 1

ε
dΩ

and s =Ω + 1
ε
dΩm. The two-form s is defined to be non-degenerate if and

only if Ω is non-degenerate. In this case both the components of s and
the ordinary two-form Ω are invertible (written as square matrices) and Ω
defines an isomorphism between TM and T ∗M ; if Ω = 1

2
Ωαβdx

αdxβ then
conventionally ΩαγΩβγ = δαβ , [21]. This definition permits non-zero pure
generalized form-valued vector field solutionsW =W(1), here termed kernel
vector fields, to the equation

iWs =0.

Let H =h+ km be a generalized zero-form, then VH is by definition a gen-
eralized form-valued Hamiltonian vector field corresponding to H when

iVH
s = −dH.

Such a Hamiltonian vector field is also a Hamiltonian vector field for the
generalized zero-form H+dL where L is any generalized minus one-form lm.
When H→ H+dL, h→ h+ εl and k → k + dl.
Employing the decomposition of Eq.(58) and writing VH = vH +VH(1)

the solutions of this equation, modulo arbitrary kernel vector fields, are given
in terms of components by

vαH = Ω
αβ(εkβ − h,β ),

vαHβ = Ω
γα(k[β,γ] −

1

2
v
µ
HΥµβγ),

where Υ = 1
3!
Υαβdx

αdxβdxγ, partial differentiation is denoted by a comma
and square brackets denote the totally skew part. By Eq.(52), and the fact
that $VH

s =0, the Lie bracket of two generalized form-valued Hamiltonian
vector fields is also a generalized form-valued Hamiltonian vector field.
A case where there is much simplification arises when the ordinary two-

form Ω is itself symplectic, s =Ω , and only generalized vector fields, defined
in Eq.(55), are considered. Then there are no kernel generalized vector fields.
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The consistency of the solutions above now requires that 2v0Ω = dk and
that, in dimension greater than two, v0 must be a constant. In symplectic
coordinates (pa, q

a), with Ω = dpadq
a and with the choices v0 a constant and

k = 2v0padq
a , the Hamiltonian generalized vector field is

VH = vH +VH(1)

=
∂h

∂pa

∂

∂qa
− (

∂h

∂qa
− 2εv0pa)

∂

∂pa
−mv0(dq

a ∂

∂qa
+ dpa

∂

∂pa
).

Integral curves for vH satisfy the generalized Hamilton’s equations

dqa

dt
=

∂h

∂pa
,
dpa

dt
= −(

∂h

∂qa
− 2εv0pa).

For example, if h = Σl
a=1

1
2
[(qa)2 + (pa)

2] the solutions of the general-
ized Hamilton’s equations are determined by the solutions of the differential
equations

d2

dt2
qa − 2εv0

d

dt
qa + qa = 0.

The appearance of the damping (or anti-damping) term when ε is non-zero
appears to parallel the appearance of a mass term in field equations when ε

is non-zero, as for example in [10].
The ideas above can be straightforwardly extended to type N � 2 gener-

alized forms and vector fields by considering functions on the Whitney sum,
M̃N of ΠTM and a reverse parity RN bundle overM , that is a trivial vector
bundle with fibre RN replaced by R0|N . Natural local coordinates on M̃N

are (xα, ζα, µi), where µi (i = 1..N) are anti-commuting coordinates on R0|N .
Type N generalized forms on M correspond, in the obvious generalization
of the type N = 1 case, to functions on M̃N which are polynomial in the
anticommuting coordinates. The exterior product of type N forms on M

corresponds to the product of such functions on M̃N . When the exterior
derivatives of the basis minus one-forms onM are given by dmi = εi, where
εi are constants, the exterior derivative of type N generalized forms on M

corresponds to the action of the vector field ζα ∂
∂xα

+εi ∂
∂µi
on such functions

on M̃N . The interior product iV of a generalized type N form by a type
N generalized vector field V = vα ∂

∂xα
, where the components vα are type N

generalized zero-forms, corresponds to the action of the vector field vα ∂
∂ζα
on

the corresponding functions on M̃N .
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The ideas of the previous sections also extend straightforwardly to gener-
alized form-valued tensor fields and geometrical objects. Such an extension
is outlined in the next section.

6 Type N = 1 generalized affine and metric

connections

In this section the formalism above will be applied and the tensor calculus
of generalized affine connections and metrics, when N = 1, will be outlined.
The definition of a generalized affine connection is the same as the defini-
tion of an ordinary affine connection except that ordinary forms, including
zero forms, are replaced by generalized forms. If {UI} is a covering of an
n−dimensional manifoldM by coordinate charts, each with coordinates {xαI }
then a generalized affine connection A is an assignment of a n × n matrix-
valued generalized one-form, with (µ, ν) entry Aµ

Iν, to each set UI and such
that on UI ∩ UJ , for all I and J ,

A
µ
Jν = (G

−1
IJ )

µ
γdGIJ

γ
ν + (G

−1
IJ )

µ
γA

γ
IλGIJ

λ
ν , (60)

where

GIJ
µ
ν =

∂x
µ
I

∂xνJ
. (61)

The curvature two-form FI is the generalized form

F
µ
Iν = dA

µ

Iν +A
µ
IρA

ρ
Iν, (62)

and under the transformation in Eq.(60)

F
µ
Jν =(G

−1
IJ )

µ
γF

γ
IλGIJ

λ
ν .

On any coordinate chart such as UI the connection one-form A
µ
Iν can be

written as
A

µ
Iν = α

µ
Iν + β

µ
Iνm, (63)

where αµ
Iν and β

µ
Iν are respectively ordinary matrix valued one-forms and the

curvature two-form is then

F
µ
Iν = F

µ
Iν + εβ

µ
Iν +Dβ

µ
Iνm, (64)
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where

Fµ
Iν = dα

µ
Iν + α

µ
Iρα

ρ
Iν, (65)

Dβ
µ
Iν = dβ

µ
Iν + α

µ
Iρβ

ρ
Iν − β

µ
Iρα

ρ
Iν.

It follows from the above that the locally defined ordinary one-forms αµ
Iν and

curvature two-forms Fµ
Iν, patch together to define global connection and cur-

vature forms, α and F , of an ordinary affine connection D. The ordinary
two-forms βµ

Iν transform as (1, 1) type tensor valued two-forms. Henceforth
connections on M will be discussed and the subscripts corresponding to co-
ordinate charts will be dropped.
The curvature satisfies the Bianchi identities

DFµ
ν =dFµ

ν +A
µ
λF

λ
ν − F

µ
λA

λ
ν = 0, (66)

where here D denotes the covariant exterior derivative of a type N = 1
valued generalized form. For a

(
1
1

)
−tensor valued generalized p-form P

DPµ
ν =dPµ

ν +A
µ
λP

λ
ν + (−1)

p+1P
µ
λA

λ
ν . (67)

The covariant derivative of a generalized zero-form is the exterior derivative.
If V = vρ ∂

∂xρ
= (vρ + vρσdx

σm) ∂
∂xρ
, the covariant derivative is

∇V = Dvµ⊗
∂

∂xµ
= (dvµ +Aµ

νv
ν)⊗

∂

∂xµ
, (68)

where
Dvµ=Dvµ − εvµνdx

ν + [D(vµνdx
ν) + βµ

ν v
ν]m, (69)

and D and D are the covariant exterior derivatives with respect to A and α

respectively. The covariant derivative with respect to a type N = 1 vector
fieldW is the generalized form-valued vector field

∇WV = [i
W
((dvα +Aα

βv
β)]

∂

∂xα
. (70)

The covariant derivative is extended to type N = 1 generalized form -valued
tensor fields by using the linearity and product rules satisfied by ordinary
covariant derivatives and tensor fields.
A field V is a parallel vector field if ∇V = 0, that is
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Dvµ − εvµν dx
ν = 0, (71)

D(vµνdx
ν) + βµ

ν v
ν = 0.

and such a system of equations is completely integrable if and only if the
generalized curvature F is zero, that is when

Fµ
ν = −εβµ

ν . (72)

Dβµ
ν = 0.

A generalized metric can be defined by straightforwardly extending the
definition of an ordinary metric to encompass generalized forms. A general-
ized metric g is a smooth symmetric bilinear function on V(1) p(M) at each
p ∈M

g(V,W)= gµνv
µwν, (73)

gµν = gvµ,

where the components are generalized zero-forms and V andW are any type
N = 1 vector fields as above. If

gµν = γµν + χµνm, (74)

where γµν and χµν are ordinary zero and one-forms respectively, the gen-
eralized metric is said to be non-degenerate when det(γµν) is non-zero. A
non-degenerate metric has inverse

gµν = γµν − χµνm (75)

where γµνγνρ = δµρ and χµν = γµργµσχρσ. Henceforth only non-degenerate
metrics will be considered.
The expanded form of gµνv

µwν is

gµνv
µwν = γµνv

µwν + (vµw
µ
ρ + wµv

µ
ρ + χµνρv

µwν)dxρm, (76)

where here and henceforth indices are lowered (and raised) by using γµν and
its inverse and χµν = χµνρdx

ρ.
If A is a generalized connection and g then A is a generalized metric

connection when the covariant derivative of g is zero. This compatibility
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condition may be expressed as the vanishing of the generalized non-metricity
one-form Q

µν
where

Dgµν = dgµν − gµλA
λ
ν − gλνA

λ
µ = Qµν . (77)

Here

Qµν = q
µν
− εχµν + [Dχµν − (βµν + βνµ)]m, (78)

Dχµν = dχµν − αλ
µχλν − αλ

νχµλ,

and qµν is the non-metricity one-form for α
µ
ν and γµν,

qµν = Dγµν = dγµν − γµλα
λ
ν − γλνα

λ
µ. (79)

When ε = 0, Qµν = 0 if and only if

qµν = 0, (80)

Dχµν = (βµν + βνµ),

that is α is a metric connection for the metric γµνdx
µdxν and

Aµ
ν = αµ

ν + (β̃
µ
.ν +

1

2
Dχµ

ν )m (81)

where β̃µ
ν =

1
2
γµλ(βλν − βνλ).

When ε �= 0, Qµν = 0 if and only if

gµν = γµν + ε−1qµνm, (82)

Aµ
ν = αµ

ν + [β̃
µ
ν −

1

2ε
(Fµ

.ν + F
.µ
ν )]m.

Hence there is the following extension of the fundamental theorem of Rie-
mannian geometry.
Let gµν = γµν + χµνm be a generalized metric. Then if A

µ
ν = αµ

ν + βµ
νm

is a generalized connection where αµ
ν has zero torsion and βµν = βνµ:

(i) When ε = 0 the only such connection which is metric, that is Dgµν =
0, is Aµ

ν = αµ
ν +

1
2
Dχµ

νm where αµ
ν is the unique Levi-Civita connection

for the metric γµνdx
µdxν. In this case the generalized curvature form is

Fµ
ν = F

µ
ν +

1
2
(Fµ

λχ
λ
ν − χ

µ
λF

λ
ν )m.
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(ii) When ε �= 0 the only such connections which are metric are given by
Aµ

ν = αµ
ν −

1
2ε
(Fµ

.ν + F
.µ
ν )m with curvature two-forms F

µ
ν =

1
2
(Fµ

.ν − F
.µ
ν ) −

1
2ε
(qνλF

λµ + qµλFνλ)m.
Note that in the latter case if the generalized metric is an ordinary metric,

that is gµν = γµν , then the only such generalized connection which is metric
is Aµ

ν = αµ
ν with generalized curvature F

µ
ν = Fµ

.ν, where αµ
ν is the unique

Levi-Civita connection for the metric γµνdx
µdxν.

7 Discussion

In this paper type N = 1 generalized form-valued vector fields have been
constructed and it has been shown that generalized vector fields constitute
a sub-class of such fields Generalized affine connections and metrics have
also been introduced. It is a straightforward matter to extend the results
in this paper to general vector bundles, generalized form-valued sections and
generalized connections. The latter, discussed in earlier papers, bear a formal
similarity to connections used in the higher gauge theories reviewed in [22].
Those generalized connections have been used to formulate Lagrangian field
theories and a similar use can be made of the generalized affine connections
and metrics introduced here.
Acknowledgement: I would like to thank Alice Rogers for some useful

discussions.

8 Appendix: Exterior derivatives of type N=1

forms

The exterior derivative d : Λp(0)(M)→ Λp+1
(0) (M) for ordinary forms is uniquely

determined by the four conditions [15]
(i) d(α+ β) = dα+ dβ.
(ii) for f ∈ f ∈ Λ0(0)(M), df has its usual meaning as the differential of f ,

(iii) d ◦ d = 0,
(iv) d(αβ) = dαβ + (−1)pαdβ, where α is a p−form.
Exterior derivatives, d : Λp

(N)(M) → Λp+1
(N) (M), for generalized forms of

type N greater than zero, also satisfy these conditions but they are not
uniquely determined by them. The aim of this appendix is to discuss this
point by developing previous work, [6], and constructing global solutions of
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the differential ideal defining the exterior derivative. This will be done here
for type N = 1 forms since they can be treated most easily and completely.
Let d : Λp

(1)(M) → Λp+1
(1) (M) be an exterior derivative for type N = 1

forms on an on a real n−dimensional differentiable manifold M . Assume
that m is a non-zero minus one-form and that any type N = 1 generalized

p−form,
p
a ∈ Λp

(1)(M), may be expressed as

p
a =

p
α+

p+1
α m, (83)

where the ordinary forms
p
α and

p+1
α are respectively of degree p and p+1 on

M , and p can take integer values from −1 to n. All the forms are assumed
to obey the usual rules of exterior algebra and calculus and the exterior
derivative of m is required to be a type N = 1 generalized zero-form.
It follows that

dm = ϑ− ϕm (84)

where ϑ is an ordinary zero-form and ϕ is an ordinary one-form onM . Then
d2m = 0 if and only if

dϑ+ ϑϕ = 0, (85)

dϕ = 0.

The solutions of this closed differential ideal of ordinary forms determine the
possible exterior derivatives d. The exterior derivative of any type N = 1

form
p
a is then given by

d
p
a = d

p
α+ (−1)p+1ϑ

p+1
α + [d

p+1
α − ϕ

p+1
α ]m. (86)

Consider now the consequences of these global assumptions. In a con-
tractible open set U on M the closed form ϕ is exact. Therefore in U ,

ϕ = dξ, (87)

ϑ = τ exp(−ξ),

for some constant τ and some function ξ. Hence, in U

dm = τ exp(−ξ)− dξm. (88)

The pair (τ ,ξ) is not unique since there is the freedom τ → τ expχ, ξ → ξ+χ,
where χ is a constant.
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Consider next a good covering of M by a family of (contractible) open
sets {UI}. By Eqs.(87) and (88) there are constants and functions (τI , ξI)
such that

ϕ = dξI , (89)

ϑ = τI exp(−ξI),

dm = τI exp(−ξI)− dξIm,

on UI and similarly on each set in the covering. On the intersection of any
two sets in the covering, UI and UJ say, it follows from Eq.(89) that

τI exp(−ξI) = τJ exp(−ξJ), (90)

dξI = dξJ .

Hence on any intersection such as UI ∩ UJ

ξI − ξJ = τIJ , (91)

τI = τJ exp τIJ ,

for constants τIJ satisfying τIJ = −τJI . Consistency on triple intersections,
UI ∩ UJ ∩ UK requires that

τIJ + τJK + τKI = 0. (92)

Therefore, on UI

d
p
a = d

p
α+ (−1)p+1τI exp(−ξI)

p+1
α + [d

p+1
α − dξI

p+1
α ]m, (93)

and similarly on all the sets in the open covering.
From Eq.(90) it follows that if τI is zero so is τJ and then on each set UI

in the open cover
dm = −dξIm (94)

and ϑ = 0 on M . Call this case (i). On the other hand if τI is non-zero in
UI then, from Eq.(90) τJ is non-zero in UJ and hence ϑ must be non-zero in
M . Call this case (ii).

Now consider rescalings ofm and
p+1
α . On each open set of the cover such

as UI let cI be a non-zero constant, and on any intersection such as UI ∩ UJ

let these constants be related by

cI = cJ exp τIJ . (95)
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On UI let

m̃I = c−1I exp(ξI)m, (96)
p+1

α̃ I = cI exp(−ξI)
p+1
α , (97)

with similar scalings on the other sets in the open cover. Then

p
a =

p
α+

p+1

α̃ Im̃I , (98)

dm̃I = τIc
−1
I ,

d
p
a = [d

p
α+ (−1)p+1τIc

−1
I

p+1

α̃ I ] + d
p+1

α̃ Im̃I ,

on UI and similarly on all the sets in the cover. It follows from Eq.(90) and
the following equations that on any intersection such as UI ∩ UJ

m̃I = m̃J ,
p+1

α̃ I =
p+1

α̃ J , (99)

dm̃I = dm̃J , d
p+1

α̃ I = d
p+1

α̃ J ,

and there is consistency on triple intersections.
In case (i), for all cI

dm̃I = 0, (100)

d
p
a = d

p
α+ d

p+1

α̃ Im̃I (101)

In case (ii), making the choice of constants cI

cI = τIε
−1 (102)

in UI , where ε is a real non-zero constant, gives

dm̃I = ε, (103)

d
p
a = [d

p
α+ (−1)p+1ε

p+1

α̃ I ] + d
p+1

α̃ Im̃I ,

and similarly for all the open sets in the cover. When ε = 1 this choice
corresponds to the choice of what has been termed a canonical basis on M.
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