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Abstract

The relationship between generalized differential forms and gen-
eralized vector fields to certain differential forms and vector fields in
superspace is explored. The investigations in this technical report
have some interesting aspects but a more satisfactory approach to
generalized forms and vector fields has now been developed in the
paper Generalized forms, vector fields and superspace.

1 Introduction

Generalized forms have been applied in diverse areas of geometrically re-
lated physics, including twistor theory [1] [2] [3], Lagrangian field theories,
such as BF theory, Yang- Mills, general relativity, Chern-Simons theories [4]
[5] and path space [8]. This paper extends the formal developments and
applications of generalized forms contained in [9] to [14]. Its aim is to ex-
plore relationships between the exterior algebra and differential calculus of
generalized differential forms on manifolds and the algebra and calculus of
exterior forms on supermanifolds. In particular, generalized vector fields,
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introduced in [6] and [7], are related to certain vector fields on superspace
and the actions of vector fields on differential forms are discussed.
A review of the algebra and differential calculus of generalized forms

needed in this paper is given in the second section. Different types of gener-
alized differential forms, on an n dimensional manifold M , are labelled by a
non-negative integer N . In this paper the case where N = 1 is considered.
A type N = 1 generalized p−form is defined by an ordered pair consisting of
two ordinary forms of degrees p and p + 1 respectively, where −1 � p � n.
The module of type N = 1 generalized p−forms on M is denoted Λp(1)(M).
The exterior product for generalized forms makes the vector space of type
N = 1 forms at a point x in M , Λ•(1)(x) = ⊕

p=n
p=−1Λ

p

(1)(x), into an associative
algebra, in fact a super-commutative graded algebra. Generalized forms of
degree zero form a commutative ring with 1 �= 0. The graded module, and
super-commutative graded algebra over the ring of smooth functions, on M
is equipped with an exterior derivatives, d : Λp(1)(M) → Λp+1(1) (M), a super-
derivation of degree one. While both the exterior algebra and differential
calculus satisfied by generalized forms are similar to the algebra and calculus
of ordinary forms there are some differences. For instance, generalized forms
of degree p = −1 are allowed and the generalized de Rham cohomology can
be different from the de Rham cohomology of ordinary forms.
Properties and actions of generalized vector fields are summarized in sec-

tion three. These objects are ordered pairs of ordinary vector fields and
functions on M . Their actions on generalized forms are extensions of the
actions of ordinary vector fields considered in [10]. The interior products,
Lie derivatives and Lie brackets constructed in [6] are listed in this section.
In section four possible relations between the algebra and differential cal-

culus of type N = 1 generalized p−forms and the exterior algebra and dif-
ferential calculus of certain classes of differential forms on supermanfolds are
discussed. Mappings between generalized forms on M and certain super-
space forms and between a class of vector fields on superspace and generalized
vector fields on M are constructed. The compatibility of these mappings
with exterior products, exterior derivatives, commutators, interior products
and Lie derivatives are considered. Incompatibilities which arise and the
definitions in [6] and [7] are discussed. All these calculations are local so the
manifold M is taken to be Rn and the corresponding superspace to be Rn|1.
Since the approach to the integration of generalized forms, as developed in
[14], is different from that of superspace integration the integral calculi are
not considered.
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The fifth section contains a summary and discussion of the results. Fi-
nally there is an appendix in which some of the results of section four are
illustrated by using them to formulate the Dirac equation inMinkowski space-
time.
In general the forms and manifolds considered may be real or complex

but in this paper it will be assumed, unless it is otherwise explicitly stated,
that the geometry is real, all geometrical objects are smooth and that M is
an n−dimensional real, smooth, orientable and oriented manifold. Bold-face
Roman letters are used to denote generalized forms and generalized vector
fields, ordinary forms on M are denoted by Greek letters and vector fields
on M by lower case Roman letters. The exterior product of any two forms,

for example α and β, is written αβ, and as usual, any ordinary p−form p
α,

with p either negative or greater than n, is zero. The degree of a form is
indicated above it and the Einstein summation convention is used

2 Algebra and calculus of generalized forms

The algebraic and differential properties of generalized forms are outlined in
this section using the notation of [13] and [14]. In this paper generalized
forms will be expressed in terms of a minus one-form which is linearly in-
dependent of ordinary forms on M , [13]. Hence a basis for type N = 1
generalized forms consists of any basis for ordinary forms on M augmented
by a minus one-forms m. These latter type of objects have the algebraic
properties of ordinary exterior forms but are assigned a degree of minus one.
They satisfy the ordinary distributive and associative laws of exterior algebra
and the exterior product rule

p
αm = (−1)pm p

α; m2 = 0, (1)

together with the condition of linear independence. Thus, for a given choice

of m, a generalized p-form,
p
a ∈ Λp(1), can be written as

p
a =

p
α+

p+1
α m, (2)

where
p
α, and

p+j
α are, respectively, ordinary p− and (p+1)−forms and p can

take integer values from −1 to n. At a point x inM the generalized p−forms
of type N=1, Λp(1)(x), form a real vector space of dimension

(1+n)!
(1+p)!(n−p)!

. The

dimension of Λ•(1)(x) = ⊕
p=n
p=−1Λ

p

(1)(x) is 2
1+n.
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If ϕ is a smooth map between manifolds P and M, ϕ : P →M, then the
induced map of type N = 1 generalized forms, ϕ∗(1) : Λ

p

(1)(M) → Λp(1)(P ), is
the linear map defined by using the standard pull-back map, ϕ∗, for ordinary
forms

ϕ∗(1)(
p
a) = ϕ∗(

p
α) + ϕ∗(

p+1
α )m, (3)

and ϕ∗(1)(
p
a

q

b) = ϕ∗(1)(
p
a)ϕ∗(1)(

q

b). Hence ϕ∗(1)(m) =m.
Henceforth in this paper, in addition to assuming that the exterior deriv-

ative of generalized forms satisfies the usual properties, it is assumed that

dm = ε, (4)

where ε denotes a real constant. If m �→m̃= µm, where µ is a non-zero

function on M , then
p
a =

p
α +

p+1
α m =

p
α +

p+1

α̃ m̃, where
p+1

α̃ = µ−1
p+1
α . Fur-

thermore dm̃=ε̃, where ε̃ is also a real constant, if and only if dµ = 0 and
then ε̃ = µε.

The exterior derivative of a type N = 1 generalized form
p
a is then

d
p
a = [d

p
α+ (−1)p+1εp+1α ] + d

p+1
α m, (5)

where d is the ordinary exterior derivative when acting on ordinary forms.
The exterior derivative d : Λp(1)(M)→ Λp+1(1) (M) is an anti-derivation of degree
one,

d(
p
a

q

b) = d
p
a

q

b+ (−1)p pad
q

b, (6)

d2 = 0.

and (Λ•(N)(M), d) is a differential graded algebra. The exterior derivative is
discussed in more detail in the appendix.

3 Generalized vector fields and type N = 1

forms

The ordinary Cartan calculus consists of three linear operators, the exterior
derivative d, the interior product (or contraction ) iv, and the Lie derivative
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$v,where v is an ordinary vector field on M . The H.Cartan formulae, [15],
are satisfied, that is

d2 = 0, d$v −$vd = 0,
dιv + ιvd = $v, $v$w −$w$v = $[v,w], (7)

$vιw − ιw$v = ι[v,w], ιvιw + ιwιv = 0,

for all vector fields v and w on M . They span a Lie superalgebra. These
linear operators were used in the definitions of similar operators acting on
generalized forms. They were introduced and defined in [10] for type N = 1
forms as follows (for N � 1 see [11]). Let two type N = 1 generalized forms

be given by
p
a =

p
α +

p+1
α m and

q

b =
q

β +
q+1

β m. The interior (contraction or
inner) product for type N = 1 generalized forms is defined for −1 � p � n
by

iv : Λ
p

(1) → Λp−1(1)

iv
p
a = iv

p
α+ iv

p+1
α m, (8)

where
−1
α = 0, and iv

0
α = 0. Then

iv(
p
a

q

b) = (iv
p
a)

q

b+ (−1)p pa(iv
q

b), (9)

that is

iv(
p
a

q

b) = iv(
p
α
q

β) + [iv(
p
α
q+1

β ) + (−1)qiv(
p+1
α

q

β)]m. (10)

The Lie derivative with respect to v of a generalized form, $v, is defined by
a Cartan-like formula

$v
p
a = iv(d

p
a) + d(iv

p
a), (11)

or equivalently

$v
p
a = $v

p
α+ ($v

p+1
α )m. (12)

Then

$v(
p
a

q

b) = ($v
p
a)

q

b+
p
a$v(

q

b). (13)

Λ(1)M) is a graded algebra and there is a natural grading of these linear
operators on Λ(M), d is degree 1, $v is of degree 0 and ιv is of degree −1.
These derivations span a super Lie algebra and satisfy the H.Cartan type
relations above.
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These results were extended when generalized vector fields were intro-
duced in [6]. In the remainder of this section definitions from that paper
will be listed so that they can be compared with results obtained in subse-
quent sections by using standard superspace results.
A generalized vector field is defined as an ordered pair of an ordinary

vector field on M and a function on M . A generalized vector field V can be
written as

V = (v1, v0) (14)

where v1 is a vector field and v0 is a function on M . The product of a

generalized zero-form,
0
a =

0
α+

1
αm, with a generalized vector field is defined

to be
0
aV = (

0
αv1,

0
αv0 + iv1

1
α). (15)

It follows from this definition that (
0

b
0
a)V =

0

b(
0
aV) where

0

b is a second gen-
eralized zero-form. Generalized vector fields form a module over the ring of
generalized zero-forms on M .
The generalized contraction or interior product of a generalized vector

field and a generalized p−form p
a is denoted IV

p
a and is a generalized (p −

1)−form given by

IV
p
a = iv1

p
α+ [iv1

p+1
α + κp(−1)p−1v0

p
α]m, (16)

where κ is an arbitrary constant. This is a (graded) derivation of degree
minus one and is constructed to satisfy the Leibniz rule

IV(
p
a

q

b) = IV(
p
a)

q

b+ (−1)p paIV(
q

b), (17)

where
q

b is any generalized q− form. In their papers the authors set κ = 1.
However this will not be done here so that later results can be easily compared
with results in this section.
The generalized Lie derivative, LV

p
a of a generalized form

p
a with respect

to a generalized vector field V is defined by Cartan-like formula

LV
p
a = IVd

p
a+d(IV

p
a) (18)

= ($v1
p
α− εκpv0

p
α)+

+ {$v1
p+1
α − ε(p+ 1)κv0

p+1
α + κp(−1)p−1(dv0)

p
α+ (−1)pκv0d

p
α}m.
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It is a derivation of degree zero and satisfies the Leibniz rule

LV(
p
a

q

b) = LV(
p
a)

q

b+
p
aLV(

q

b). (19)

The generalized commutator of two generalized vector fields V andW is
a generalized vector field and is defined by

{V,W} = ([v1, w1],$v1w0 −$w1v0). (20)

HereW = (w1, w0), and the ordinary commutator or Lie bracket is denoted
with square brackets. The Jacobi identity is satisfied so generalized vector
fields form a Lie algebra. The generalized commutator is constructed so that
for any generalized form

(LVLW − LWLV)
p
a = L{V,W}

p
a. (21)

A modified Lie derivative L̂V, which like the Lie derivative, LV, is a
derivation of degree zero satisfying the Leibniz rule and

(L̂VL̂W − L̂WL̂V)
p
a = L̂{V,W}

p
a, (22)

is given by

L̂V
p
a = ($v1

p
α− pεv0

p
α) + ($v1

p+1
α − (p+ 1)εv0

p+1
α )m. (23)

The modified Lie derivative of a generalized vector field is defined by

L̂VW = ([v1, w1] + εv0w1,$v1w0). (24)

With this definition L̂ , unlike the unmodified generalized Lie derivative L,
satisfies

L̂VIW − IWL̂V = I
L̂VW

. (25)

However, L̂VW is not equal to the generalized commutator and the modified
Lie derivative of a generalized form is not given by a Cartan-like formula.
The modified Lie derivative will not be considered further in this paper.
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4 Superspace, generalized forms and vector

fields

First in this section relations between the exterior algebra and calculus of
type N = 1 generalized p−forms on a manifold M and the exterior algebra
and calculus of certain classes of [p + 1 + r(p)]−forms, −1 � p � n, on a
supermanifold [16] [17] [18], are constructed and explored. Here r(p) denotes
an integer-valued function of p which will be discussed below. Then vector
fields on superspace and generalized vector fields are related and the action
of the vector fields on the differential forms is discussed. All the consider-
ations here are local ones so the real manifold M is taken to be Rn and the
supermanifold to be the Z2 graded vector space R

n|1. Complex manifolds
can be dealt with in a similar way In this section the superspace definitions
and sign conventions generally follow those used in [18].
Let coordinates on Rn|1 be the (even) coordinates of Rn and the odd

variable y which commutes with ordinary functions and forms on Rn. The
following relations and conventions hold,

y2 = 0, ydy = −(dy)y, (26)

dydy �= 0,
p
αdy = (−1)p(dy) pα,

d(y
p
α) = dy

p
α+ yd

p
α,

where
p
α is any ordinary one-form on Rn.

Let
p
a and

q

b be generalized type N = 1 forms on Rn

p
a =

p
α+

p+1
α m and

q

b =
q

β +
q+1

β m, (27)

where dm = ε and ε is a real constant. If their exterior product is the

degree (p+ q) generalized form
p+q
c ,then

p+q
c =

p
a

q

b, (28)

=
p
α
q

β + [
p
α
q+1

β + (−1)qp+1α
q

β]m,
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Now, for given ε, k and r(p) introduce the map Φ : Λ•(1)(R
n) → Λ•(Rn|1) by

p
a ∈ Λ•(1)(Rn)→

p+1+r(p)
a ∈ Λ•(Rn|1) where

p
a �→ Φ(

p
a) =

p+1+r(p)
a = [

p
αdy + (εy + k)

p+1
α ][dy]r(p). (29)

Here k is an odd Grassmann parameter, satisfying

dk = 0, (30)

k2 = 0, ky = −yk, kdy = −(dy)k,

and for s � 0 [dy]s denotes the s−fold exterior product of dy with itself, with
[dy]0 = 1. Furthermore r : p �→ r(p) is an integer-valued function of p as
above.
Under a (super) diffeomorphism y = µỹ +l, where µ is of even type

and l is odd, dµ = dl = 0,
p+1+r(p)
a = [

p

α̃dỹ + (ε̃ỹ + k̃)
p+1

α̃ ][dỹ]r(p), where
p

α̃ =
p
αµr(p)+1,

p+1

α̃ =
p+1
α µr(p), ε̃ = εµ, k̃ = εl+ k. For fixed m and y and k the

map Λ•(1)(R
n)→ Φ[Λ•(1)(R

n)] is bijective.

Similarly Φ(
q

b) is the [q + 1 + r(q)]−form
q+1+r

b on Rn|1 given by

Φ(
q

b) =
q+1+r(q)

b =
q

[βdy + (εy + k)
q+1

β ][dy]r(q),

and Φ(
p+q
c ) is the [p+ q + 1 + r(p+ q)]−form on Rn|1, given by

p+q+1+r(p+q)
c = { pα

q

βdy + [εy + k][
p
α
q+1

β + (−1)qp+1α
q

β]}{dy}r(p+q). (31)

On the other hand the exterior product of of the superspace forms Φ(
p
a) and

Φ(
q

b) is given by the [p+ q + 2 + r(p) + r(q)]−form

Φ(
p
a)Φ(

q

b) =
p+1+r(p)
a

q+1+r(q)

b (32)

= (−1)q[r(p)+1]{ pα
q

βdy + [εy + k][
p
α
q+1

β + (−1)qp+1α
q

β]}{dy}1+r(p)+r(q).

Hence the exterior product of Φ(
p
a) and Φ(

q

b) is related to Φ(
p
a

q

b) = Φ(
p+q
c )

by
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Φ(
p
a)Φ(

q

b) = (−1)q[r(p)+1]Φ(p+qc )(dy)1+r(p)+r(q)−r(p+q), that is (33)

p+1+r(p)
a

q+1+r(q)

b = (−1)q[r(p)+1](p+q+1+r(p+q)c )(dy)1+r(p)+r(q)−r(p+q).

Consider now the exterior calculus. The exterior derivative of the gen-

eralized p−form p
a is given by the (p+ 1)−form

d
p
a = (d

p
α+ (−1)p+1εp+1α ) + d

p+1
α m, (34)

with image under Φ given by the [p+ 2 + r(p+ 1)]−form

Φ(d
p
a) = {[d pα+ (−1)p+1εp+1α ]dy + (εy + k)d

p+1
α }{dy}r(p+1). (35)

However the exterior derivative of Φ(
p
a)=

p+1+r(p)
a is given by

d[Φ(
p
a)] = d

p+1+r(p)
a = {[d pα+ (−1)p+1εp+1α ]dy + (εy + k)d

p+1
α }{dy}r(p). (36)

From Eq.(33) it follows that Φ is a homomorphism of the exterior algebras
of generalized forms and forms on superspace, that is

Φ(
p
a

q

b) = Φ(
p
a)Φ(

q

b),

if and only if

1 + r(p) + r(q)− r(p+ q) = 0, (37)

(−1)q[r(p)+1] = 1.

The solution of Eq.(37) is given by

r(p) = 2cp− 1, (38)

where c is an integer. On the other hand, it can be seen from Eqs.(35)
and(36) that the map Φ is compatible with the exterior derivatives, that is

Φ(d
p
a) = d[Φ(

p
a)],

if and only if
r(p) = r(p+ 1). (39)
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This equation requires r to be the constant function. This difference between
the compatibility conditions given by Eqs. (37) and (39) has consequences
which will be discussed below. Before that a relationship between vector
fields on Rn|1 and generalized vector fields on Rn, discussed in section three,
will be exhibited.
Let χ(1)(R

n|1) denote the module, over the ring of real functions on Rn,
of superspace vector fields of the form

V =v1 + v0(εy + k)
∂

∂y
, (40)

where v1 and v0 are respectively vector fields and functions on R
n. The

Lie supercommutator, of V and W =w1 + w0(εy + k) ∂
∂y
is (with the Lie

superbracket sign convention opposite to [18])

[V,W] = [v1, w1] + [v1(w0)− w1(v0)](εy + k)
∂

∂y
. (41)

Hence the module of such vector fields is an algebra, in fact a Lie algebra.
Furthermore the Lie derivative of W with respect V is

$VW = [V,W] =$v1w1 + [v1(w0)− w1(v0)](εy + k)
∂

∂y
. (42)

where, as above, $v1 denotes the ordinary Lie derivative when acting on
tensor fields on Rn.
Let Ψ denote the mapping of χ(1)(R

n|1) to the module of generalized
vector fields on Rn, χG(R

n) by

Ψ : V �→Ψ(V) =V, where (43)

V=v1 + v0(εy + k)
∂

∂y
and V = (v1, v0).

For fixed ε, y and k the map χ(1)(R
n|1)→ Ψ(χ(1)(R

n|1)) is a bijection.
It follows from Eqs.(20) and (41) that this mapping is compatible with the

Lie supercommutator on Rn|1 and the generalized commutator of generalized
vector fields on Rn, that is

Ψ([V,W])={Ψ(V),Ψ(W)} = {V,W}, (44)

where the generalized vector fields Ψ(V) = V = (v1, v0) and Ψ(W) =W =
(w1, w0).
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Such compatibility does not extend in a straightforward way to the inte-
rior product and the Lie derivatives of forms. This is unsurprising consider-
ing the compatibility results above for the map Φ and the exterior products
on the one hand and the exterior derivatives on the other hand First consider
the interior product.
The superspace interior product for such a vector field V,iV, is a graded

derivation of degree minus one and and for any superspace forms, say
p
u and

q
v, satisfies

iV(
p
u
q
v) = (iV

p
u)
q
v+ (−1)p pu(iV

q
v). (45)

The interior product of V with the superspace [p+ 1 + r(p)]−form, p+1+r(p)a ,

p+ 1 + r(p) > 0, is the [p+ r(p)]−degree form iV
p+1+r(p)
a where

p+1+r(p)
a = [

p
αdy + (εy + k)

p+1
α ][dy]r(p) (46)

iV
p+1+r(p)
a = {(iv1

p
α)dy + [εy + k][iv1

p+1
α + (−1)p(r(p) + 1)v0

p
α]}(dy)r(p).

It follows from Eqs.(16) and (46) above that there is compatibility of the
interior products iV and IV above with the maps Φ and Ψ, that is

Φ(IV
p
a) = Φ(IΨ(V)

p
a) = iV

p+1+r(p)
a , (47)

if and only if, for integer c,

κ = 2c, (48)

r(p) = 2cp− 1.

The superspace Lie derivative of the superspace form
p+1+r(p)
a with respect to

the vector field V is denoted $V is a graded derivation of degree zero and is
defined by the Cartan-type formula

$V

p+1+r(p)
a = d(iV

p+1+r(p)
a ) + iV(d

p+1+r(p)
a ). (49)

Calculation gives

$V

p+1+r(p)
a = {[$v1

p
α+ ε(r + 1)v0

p
α]dy+ (50)

+ [εy + k][$v1
p+1
α + ε(r + 1)v0

p+1
α + (−1)p(r + 1)(dv0)

p
α]}(dy)r(p).
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Hence the Lie derivatives $V and LV are compatible with the maps Φ
and Ψ, that is

Φ(LV
p
a) = Φ($Ψ(V)

p
a) = $VΦ(

p
a) = $V

p+1+r(p)
a , (51)

if and only if

LV
p
a = [$v1

p
α+ ε(r+1)v0

p
α]+ [$v1

p+1
α + ε(r+1)v0

p+1
α +(−1)p(r+1)(dv0)

p
α]m.
(52)

By comparing this equation with the expression for LV
p
a in Eq.(18) it is

seen that compatibility under the maps Φ and Ψ holds for the superspace
Lie derivative and the generalized Lie of generalized forms if and only if

κ = r(p) + 1 = 0. (53)

Hence the only solution of both Eqs.(38) and (39) compatible with Eq.(51)
is

c = 0, r(p) = −1. (54)

This is not surprising as the Lie derivative, unlike the interior product,
involves both the latter, with compatibility condition Eq.(48) consistent with
Eq.(38) and the exterior derivative with compatibility condition given by
Eq.(39). When Eq.(54) is satisfied the definitions of the interior product and
the Lie derivative of a generalized form by a generalized vector field (v1, vo)
on Rn reduce to the definitions of the interior product and Lie derivative by
the ordinary vector field v1 as in [10].
Furthermore compatibility of both the exterior product and exterior deriv-

ative with the maps Φ and Ψ and the consequent compatibility of the interior
products and Lie derivatives requires the introduction of a formal superspace
quantity (dy)−1 so that the map Φ becomes Φ : Λ•(1)(R

n) → Λ•(Rn|1) by
p
a ∈ Λ•(1)(Rn)→

p+1
a ∈ Λ•(Rn|1) where

p
a �→ Φ(

p
a) =

p
a =

p
α+

p+1
α [(εy + k)dy−1]. (55)

In order that the earlier calculations using (dy)s continue to hold when s =
−1 the formal object (dy)−1 is assumed to be of odd type, have formal degree
minus one, satisfy the usual linearity properties of differential forms and have
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the same type of properties that (dy)s for non-negative s, that is

dy(dy)−1 = (dy)−1dy = (dy)0 = 1, (56)

(εy + k)(dy)−1 = −(dy)−1(εy + k),
p
α(dy)−1 = (−1)p(dy)−1 pα,

d[d(y)−1] = 0, d[
p
α(dy)−1] = d

p
α(dy)−1, d[y(dy)−1] = dy(dy)−1 = 1.

Hence, for example, if f is a function on superspace df(dy)−1 = ∂f/∂ξi[dξi(dy)−1]+
∂f/∂y, where {ξi} are n coordinates on Rn.
It is natural, in this context, to define a generalized degree minus one

form m on Rn|1 by
m = (εy + k)(dy)−1. (57)

so that, from Eq.(55),

m �→ Φ(m) = m, (58)
p
a =

p
α+

p+1
α m �→ Φ(a) =

p
a =

p
α+

p+1
α m.

5 Conclusion

The first aim of this work was to discover if the algebra and differential cal-
culus of generalized forms could be realized via a mapping into the algebra
and calculus of superspace forms. The second aim was to see if generalized
vector fields could be satisfactorily related to superspace vector fields. For-
mulae that appeared in [13] were developed and employed, in a superspace
context, to construct mappings between generalized forms and superspace
forms. The compatibility conditions between these maps and the exterior
products on the one hand and the exterior derivatives on the other were
found to be different. A mapping of superspace vector fields to generalized
vector fields was also constructed. This map was compatible with the com-
mutators of these vector fields. In addition, when the mapping of forms
satisfied the compatibility conditions for the exterior product, it was com-
patible with the interior products of vector fields and forms However there
was no compatibility between the mappings and the Lie derivatives of forms.
This was not surprising as the computation of the Lie derivative involves the
use of the exterior derivative which required a different compatibility condi-
tion from the exterior product. The incompatibilities could be resolved by
enlarging the concept of superspace differential forms with the introduction
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of a formally defined negative degree superspace form. When this was done
it was found that the interior products and Lie derivatives with respect to
generalized vector fields reduced to the ones introduced for ordinary vector
fields in [10]. From the point of view taken in this paper the need for the
modification of the Lie derivative, as discussed and introduced in [6] and
exhibited in section three above, can be traced back to the difference in the
compatibility conditions for the exterior product and exterior derivative. To
sum up, while some interesting results and insights were obtained the origi-
nal aims of this investigation were not fully realized. What the investigation
did indicate was that exterior algebra and calculus of generalized forms are
indeed generalizations of the ordinary manifold and supermanifold algebras
and calculi.

Conversations with Alice Rogers and comments by Pawel Nurowksi are

gratefully acknowledged.

6 Appendix

6.1 The classical Dirac equation

In this appendix the classical Dirac equation in Minkowski space-time is
discussed. This will provide a simple example where the map Φ, defined
in section four, that is used is compatible with the exterior derivative but
not the exterior product. Consider four dimensional Minkowski space-time
R
1,3 with line element given, using two-component spinors[19] , by ds2 =

εABεA′B′dξ
AA′ ⊗ dξBB

′

, where ξAA
′

is related to Minkowski coordinates by

ξAA
′

=
1√
2

(
ξ0 + ξ3 ξ1 − iξ2

ξ1 + iξ2 ξ0 − ξ3

)
,

and spinor suffixes sum and range over zero to one. Using two-component
spinors the classical Dirac equation takes the form

∂AA
′

σA = −
iµ√
2
ρA

′

; ∂AA′ρ
A′ = − iµ√

2
σA,

where ∂AA′ = ∂/∂ξAA
′

and µ denotes the rest mass, [20]. Introduce the
four-spinor valued type N = 1 generalized three-form

S =

(
χA

′

+ ζA
′

m

αA + βAm

)
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on four dimensional Minkowski space-time R1,3 where αA, χ
A′ and βA, ζ

A′ are
respectively the classical spinor-valued ordinary three-forms and four-forms

χA
′

= σAη
AA′, ζA

′

=
i√
2
ρA

′

υ,

αA = ρA
′

ηAA′ , βA =
i√
2
σAυ.

Here υ is the Minkowski volume four-form and ηAA
′

= i
3
dξAB

′

dξBA
′

dξBB′ is

the basis of three-forms dual to the one-forms basis dξAA
′

. The exterior
derivative of the minus one-form m is given by dm = ε, with ε = µ.
Consider first the case where the rest-mass is non-zero. The four-spinor

ψ =

(
ρA

′

σA

)
satisfies the classical Dirac equation if and only if the four-

spinor valued generalized three-form S is closed

dS = 0.

By the results of section four, when the choice r(p) = 0 is made S corresponds
to the spinor-valued four-form Φ(S) on R1,3|1,

Φ(S) =

(
χA

′

dy + (µy + k)ζA
′

αAdy + (µy + k)βA

)
,

which is also closed,
d[Φ(S)] = 0,

if and only if the classical Dirac equation is satisfied by ψ on R1,3. When
the Dirac equation is satisfied these forms are not only closed they are also
exact and

S = − 1
µ
d

(
χA

′

m

αAm

)
; Φ(S) = − 1

µ
d

(
(µy + k)χA

′

(µy + k)αA

)
.

Consider next the case where the rest-mass µ is zero so that the Dirac equa-
tions reduce to a pair of decoupled Weyl equations

∂AA
′

σA = 0; ∂AA′ρ
A′ = 0.

Since now dm = 0, and therefore ζA
′

m, βAm, kζ
A′ and kβA are closed

independently of the field equations, the forms S and Φ(S) can be simplified
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to Ŝ =

(
χA

′

αA

)
and Φ(Ŝ) =

(
χA

′

dy
αAdy

)
respectively, and the Weyl equations

are satisfied if and only if the simplified forms Ŝ and Φ(Ŝ) are closed. When
the Weyl equations are satisfied these closed forms can be written as the
exact forms

Ŝ=d

(
ϑA

′

γA

)
; Φ(Ŝ) = d

(
ϑA

′

dy
γAdy

)
.

The spinor-valued two-forms ϑA
′

and γA are respectively defined up to the
gauge freedoms ϑA

′ �−→ ϑA
′

+ dτA
′

, γA �−→ γA + dιA where τ
A′ and ιA are

arbitrary spinor-valued one-forms.
Now the spinor valued two-form ϑA

′

can be expressed in terms of its
components (potentials) with respect to the coordinate basis

ϑA
′

= ϑA
′

BCΣ
BC + ϑA

′

B′C′Σ
B′C′ + (δA

′

B′ϕC′)Σ
B′C′

where ΣBC = 1
2
dξBB′dξ

CB′ , ΣB
′C′ = 1

2
dξB

′

B dξBC
′

, ϑA
′

BC = ϑA
′

(BC), ϑA′B′C′ =
ϑ(A′B′C′), and similarly for γA. By using this expansion and the equality
σAη

AA′ = dϑA
′

the solutions of the Weyl equations can be expressed in the
form

σA =
i

2
[∂BA′(ϑ

A′B
..A )−

3

2
∂AA′ϕ

A′],

when the potentials satisfy the equations

∂CD′ϑ
D′

A′C′ = ∂D(C′ϑ
CD
A′) +

1

2
∂C(A′ϕC′).

The solutions ρA
′

may be similarly obtained from the complex conjugates of
such equations. This example illustrates a correspondence between gener-
alized forms and superspace forms in a case where the exterior product is
not employed. However it should be noted that, because of the linearity in
this particular example, if the odd superspace coordinate y and parameter
k are replaced respectively by an even coordinate, say on a line bundle over
Minkowski space-time, and a real number, the formulae above, and a closed
form expression for the Dirac equation, still hold.
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