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1 Introduction

The algebra and calculus of ordinary differential forms have been extended in
recent years to what have been termed generalized differential forms. Gen-
eralized forms have been used in various geometrical and classical field the-
ories, first in the context of twistor theory, [1], [2], [3], then subsequently in
other physical applications such as the Lagrangian formulations of various
field theories as, for example, in references [4], [5]. The dual notion of a
generalized vector field has also been investigated [6]. The general aim of
this paper is to consolidate and extend the formulation and applications of
generalized forms developed in a number of papers, [7]-[11]. The specific
aim is to present and apply an integral calculus of generalized forms. The
notions of poly-chain complexes is introduced and integration of generalized
forms over poly-chains is defined. A Stokes’ theorem for generalized forms
is constructed by using poly-chains, and the generalized second Chern class
and Chern-Simons three-form are discussed. The relationship of the latter
to Lagrangian formulations of the Einstein-Yang-Mills field equations is ex-
plored.

A generalized differential form, on an n dimensional manifold M , may be
described by an ordered set of ordinary differential forms. There are gen-
eralized forms of different types, each type being labelled by a non-negative
integer N . The module of type N generalized p−forms on M is denoted
Λp

(N)(M), where for generalized forms the degree p can take integer values
from −N to n. Generalized p−forms of type N = 0 are just ordinary
p−forms on M . Generalized p−forms of type N = 1 may be described by
ordered pairs of ordinary p- and (p + 1)-forms. In a similar way p-forms of
type N on M may be described by ordered multiplets of ordinary forms of
degrees p to p + N . Type N ≥ 1 p−forms can be constructed iteratively in
terms of ordered pairs of p− and (p+1)−forms of type (N−1). The exterior
product for generalized forms makes the vector space of type N forms at a
point x in M , Λ·

(N)(x) = ⊕p=n
p=−NΛp

(N)(x), into an associative algebra, in fact a
super-commutative graded algebra. Generalized forms of negative degree are
permitted and generalized forms of zero degree form a commutative ring with
1 6= 0. In this paper attention will be mainly focused on the graded modules,
and super-commutative graded algebras over the ring of smooth functions on
M . These are equipped with exterior derivatives, d : Λp

(N)(M)→ Λp+1
(N) (M),

super-derivations of degree one. Further discussion of generalized forms in
the context of differential graded algebras and an investigation of their rela-
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tionship to forms on path spaces can be found in reference [12]. Generalized
forms of a given type obey the same basic algebraic and differential rules as
ordinary forms, although there are some differences from the ordinary exte-
rior algebra and calculus. For instance generalized forms of negative degree
p are allowed and the generalized de Rham cohomology changes when N is
non-zero.

A review of the properties of generalized forms needed in this paper is
presented the next section. Formalism developed in references [7]-[11] is
employed, and the conventions used in reference [11] are retained. Some
simple cohomological concepts needed in later sections are also presented.
In the third section type N = 1 generalized chains, termed poly-chains, and
boundary operators in a n−dimensional smooth oriented manifold M , are
introduced. The integration of type N = 1 generalized p−forms over poly-
chains is then defined. These definitions enable Stokes’ theorem for ordinary
real chains, or type N = 0 poly-chains, and ordinary differential forms, to
be extended to Stoke’s theorem for poly-chains and type N = 1 forms. In
this way a real (poly-) chain complex, dual to the co-chain complex of type
N = 1 generalized differential forms, is constructed. These results are then
broadened to encompass integration of generalized forms of any type over
generalized real chains in M . Poly-chains, are defined for any N ≥ 1, and
Stoke’s theorem is extended to type N ≥ 1 generalized forms and poly-chains.
Within this framework type N ≥ 0 poly-chains, together with the boundary
operators, form a real generalized (poly-) chain complex dual to the type
N ≥ 0 generalized de Rham co-chain complex. The real co-chain complex of
type N generalized differential forms is bounded above by co-chains of degree
n and bounded below by co-chains of degree −N . Similarly the dual real
chain complex is not restricted to being non-negative when N > 0, and is
bounded above by poly-chains of degree n and bounded below by poly-chains
of degree −N . The last two sections develop in a new way previous investi-
gations of generalized characteristic classes and Lagrangian field theories in
four space-time dimensions. In references [4] and [5], generalized topological
field theories were introduced and studied. Actions which included Chern-
Simons terms naturally induced from the generalized topological action in
the bulk were constructed for a variety of field theories by using generalized
second Chern class four-forms. Further examples of the use of generalized
characteristic classes to construct Lagrangians for classical field theories, such
as general relativity, were presented in [11]. In the fourth section the general-
izations of the ordinary second Chern class and the Chern-Simons three-form
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are reconsidered in the light of the results of section three. Type N = 1
structures are considered in detail.

An application of these latter results to gravitation and gauge theories
is given in the fifth section. The Einstein vacuum and Einstein-Yang-Mills
theories are reformulated as generalized Chern-Simons theories. General-
ized Chern-Simons type N = 1 three-forms, integrated over type N = 1
degree three poly-chains, are identified as actions for the Einstein vacuum
and Einstein-Yang-Mills equations on four dimensional manifolds with or
without cosmological constant and boundary terms. The boundary, or lower
dimensional, terms are not added in by hand but arise more naturally. They
can include both ordinary Einstein and Yang-Mills Chern-Simons terms as
well as additional terms like those added when asymptotically flat systems
are studied, [13]. The geometrical framework and approach presented here
differs from the large amount of previous research on Chern-Simons gravity.
But it does share the same general context as those investigations. Many
of them deal with Chern-Simons gravity in 2+1 dimensions with references
[14] and [15] being, in different ways, highly influential. A recent review
[16] discusses aspects of this research and contains many futher citations. A
selection of different studies of Chern-Simons gravity in higher dimensions is
contained in references [17], [18] and [19], the latter being an introduction
which surveys results applying in odd dimensions. It is a straightforward
matter to investigate other characteristic classes and classical field theories
using the framework developed in this paper.

In the interests of clarity, and notational simplicity, details of investiga-
tions will sometimes be confined to cases where the type N is equal to one.
A number of examples explore selected constructions when N is one or two,
and it is easy to see how to generalize results to cases where N ≥ 2.

2 Basic properties and cohomology of gener-

alized forms

Here the salient properties of generalized forms on an n dimensional manifold
M will be reviewed. In general the forms and manifolds considered may be
real or complex but in this paper it suffices to take M to be real, smooth,
orientable and oriented. Bold-face Roman letters are used to denote gener-
alized forms, ordinary forms are denoted by Greek letters, and, where it is
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useful, the degree of a form is indicated above it. The exterior product of
any two forms, for example α and β, is written αβ. As usual, any ordinary

p−form
p
α, with p either negative or greater than n, is zero.

A generalized p−form of type N = 0 is an ordinary p−form,
p
a(0) =

p
α and

the exterior product and derivative of type N = 0 forms are the ordinary
exterior product and derivative. There are a number of different ways of
representing generalized forms of type N > 0, [11], and two will be used in
this paper. In the first representation, a generalized p−form of type N = 1
is an ordered pair of ordinary p− and p + 1−forms,

p
a(1) = (

p
α,

p+1
α ). (1)

A generalized p-form of type N ≥ 1 is then an ordered pair generalized forms
of type N − 1, that is

p
a(N) = (

p
a(N−1),

p+1
a (N−1)), (2)

It follows that
p
a(N)can be expressed, iteratively, as an ordered tuple of ordi-

nary forms. If
q

b(N) = (
q

b(N−1),
q+1

b (N−1)) is, in a similar way, a type N ≥ 1
generalized q−form, the exterior product is defined to be the ordered pair

p
a(N)

q

b(N) = (
p
a(N−1)

q

b(N−1),
p
a(N−1)

q+1

b (N−1) + (−1)qp+1
a (N−1)

q

b(N−1)), (3)

and this product obeys the same rules as the ordinary exterior product, in
particular

p
a(N)

q

b(N) = (−1)pq
q

b(N)

p
a(N). (4)

When N = 0 the conditions satisfied by the ordinary exterior derivative
ensure its uniqueness. However, when N is greater than one uniqueness
does not necessarily follow in the same way. It was pointed out in [11], that
there are naturally two distinct types of exterior derivatives when N ≥ 1.
Here they will be carried along together. The two exterior derivatives will
be labeled by ǫ, where in the first case ǫ = 0 and in the second case ǫ = 1.
The exterior derivatives, are defined, iteratively, by the ordered pairs

d
p
a(0) = d

p
α; d

p
a(1) = (d

p
α + (−1)p+1ǫ

p+1
α , d

p+1
α ) (5)

d
p
a(N) = (d

p
a(N−1), d

p+1
a (N−1)); N > 1.
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where again d is the ordinary exterior derivative when acting on ordinary
forms. The exterior derivative d : Λp

(N)(M)→ Λp+1
(N) (M) is an anti-derivation,

d(
p
a(N)

q

b(N)) = d
p
a(N)

q

b(N) + (−1)p p
a(N)d

q

b(N), (6)

and (Λ·

(N)(M), d) is a differential graded algebra, for each choice of ǫ.
In the second representation, which can be calculationally convenient,

type N generalized forms are expanded in terms of bases. A basis for type N
generalized forms consists of any basis for ordinary forms on M augmented
by N linearly independent minus one-forms, {mi} (i = 1...N). These latter
objects have the algebraic properties of ordinary exterior forms but are as-
signed a degree of minus one. Hence they satisfy the ordinary distributive
and associative laws of exterior algebra and the exterior product rule

mimj = −mjmi;
p
αmi = (−1)pmi p

α, (7)

together with a condition of linear independence, m1m2....mN 6= 0. Thus,

a generalized p-form,
p
a(N) ∈ Λp

(N), can be written as

p
a(N) =

p
α +

j=N∑

j=1

1

j!

p+j
α i1....ijm

i1 .....mij , (8)

where
p
α, and

p+j
α i1....ijare, respectively, ordinary p− and (p+j)−forms; i1,...ij, ..., iN

range and sum over 1 to N ; and
p+j
α i1....ij =

p+j
α [i1....ij ]. From the basis expan-

sion it can be seen that at a point x in M the generalized p−forms of type N ,
Λp

(N)(x), form a real vector space of dimension (N+n)!
(N+p)!(n−p)!

. The dimension

of Λ·

(N)(x) = ⊕p=n
p=−NΛp

(N)(x) is 2N+n.
A generalized p-form of type N ≥ 1 may also be written in terms of pair

generalized forms of type N − 1,

p
a(N) =

p
a(N−1) +

p+1
a (N−1)m

N , (9)

the basis expansion above can then be re-obtained iteratively. When N ≥ 1,
the relationship between this basis expansion and the first representation is
then given by

(
p
a(N−1),

p+1
a (N−1)) =

p
a(N−1) +

p+1
a (N−1)m

N . (10)
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In the second representation the two exterior derivatives given above can
be expressed in the following way. The minus one-forms {mi}, i = 1...N
have exterior derivatives

dm1 = ǫ, (11)

dmi = 0; i ≥ 2.

Again in the first case ǫ = 0, and in the second ǫ = 1. They satisfy the
standard rules of exterior differentiation apart from the fact that they have
negative degree. For example

d(mjmk..ml) = ǫδj
1m

k...ml −mjd(mk...ml), (12)

d(
p
αmi) = (d

p
α)mi + (−1)pǫ

p
αδi

1,

d(mi p
α) = ǫδi

1

p
α−mid

p
α,

where i, j, k, l range from 1 to N . Altogether, in the second representation,

the expressions for the exterior derivatives of a generalized p−form
p
a(N) are

d
p
a(N) = d

p
α + (−1)p+1ǫ

p+1
α 1 + [d

p+1
α i1 + (−1)pǫ

p+2
α 1i1 ]m

i1 + ... (13)

+
1

(N − 1)!
[d

p+N−1
α i1...iN−1

+ (−1)p+Nǫ
p+N
α 1i1...iN−1

]mi1 ..miN−1

+
1

N !
d

p+N
α i1....iN mi1 ..miN .

For each N > 0 and each choice of ǫ, the co-chain complex, over R,

0
d
→ Λ−N

(N)(M)
d
→ ..

d
→ Λp

(N)(M)
d
→ Λp+1

(N) (M)
d
→ ..

d
→ Λn

(N)(M)
d
→ 0 (14)

is a generalization of the usual, N = 0, de Rham complex. The standard
definitions for ordinary forms, as outlined in reference [20] for example, can
be extended to generalized forms. Here vector spaces over R are considered.
The set of type N closed generalized p−forms on M is the (N, p)−th co-cycle
group and is denoted Zp

(N)(M), the set of type N exact generalized p−forms

on M is the (N, p)−th co-boundary group and is denoted Bp

(N)(M) and the

(N, p)−th de Rham cohomology group is Hp

(N)(M) = Zp

(N)(M)/Bp

(N)(M).
When N = 0 these are the ordinary de Rham cohomology definitions. When
N ≥ 1, in the first case where ǫ = 0, Hp

(N)(M) = Hp

(N−1)(M) ⊕ Hp+1
(N−1)(M)

but in the second case, where ǫ = 1, since every closed generalized form is
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exact, Hp

(N)(M) is trivial. The following examples provides further details
which will be useful in later sections.

Example 1: Let N = 2 and let
p
a(2) = (

p
a(1),

p+1
a (1)), where

p
a(1) = (

p
α,

p+1
α 1)

and
p+1
a (1) = (

p+1
α 2,

p+2
α ), so that

p
a(2) = (

p
α,

p+1
α 1,

p+1
α 2,

p+2
α ). Then if in a similar

way,
q

b(2) ≡ (
q

β,
q+1

β1 ,
q+1

β2 ,
q+2

β ), it follows that

p
a

q

b =
p+q
c ≡ (

p+q
γ ,

p+q+1
γ1 ,

p+q+1
γ2 ,

p+q+2
γ ), where (15)

p+q
γ =

p
α

q

β,

p+q+1
γ1 =

p
α

q+1

β 1 + (−1)qp+1
α 1

q

β,
p+q+1
γ2 =

p
α

q+1

β2 + (−1)qp+1
α2

q

β,

p+q+2
γ =

p
α

q+2

β + (−1)q+1p+1
α 1

q+1

β2 + (−1)qp+1
α 2

q+1

β 1 +
p+2
α

q

β,

and

d
p
a = (

p+1
σ ,

p+2
σ 1,

p+2
σ 2,

p+3
σ ), where (16)

p+1
σ = d

p
α + (−1)p+1ǫ

p+1
α 1,

p+2
σ 1 = d

p+1
α 1,

p+2
σ 2 = d

p+1
α 2 + (−1)pǫ

p+2
α ,

p+3
σ = d

p+2
α .

Example 2: Let N = 1 and let
p
a =

p
α +

p+1
α m so that d

p
a = [d

p
α +

(−1)p+1ǫ
p+1
α ]+ d

p+1
α m. Hence when p = n the dimension of M ,

n
a is always

closed.
In case (i), where ǫ = 0,

p
a is closed if and only if both

p
α and

p+1
α are

closed. In particular when p = −1, so that
−1
a =

0
αm,

−1
a is closed if and only

if d
0
α = 0. Furthermore

p
a is exact if and only if both

p
α and

p+1
α are exact.

There are, of course, no non-zero exact minus one-forms in this case.

In case (ii), where ǫ = 1,
p
a is closed if and only if

p+1
α = (−1)pd

p
α so that

p
a =

p
α + (−1)pd

p
αm = d[(−1)p p

αm]. Hence
p
a is closed if and only if it is

exact. In particular when p = −1,
−1
a is closed if and only if it is zero.

In future, when the type or degree of a form is obvious from the context
its explicit labeling will be omitted.
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3 Poly-chains, integration and Stokes’ theo-

rem for oriented manifolds

In order to define integrals of generalized forms and a Stokes’ theorem for
generalized forms, on an orientable and oriented manifold M , the concepts
of real chains and chain complexes need to be extended appropriately.

Recall that for ordinary forms on M , [20], Stokes theorem states that

∫

cp+1

d
p
α =

∫

∂cp+1

p
α (17)

where cp+1 is a real (p + 1)−chain in M and ∂cp+1 is its oriented boundary.
The aim in this section is to introduce the notion of a p−poly-chain of type
N , c

(N)
p , together with that of a boundary operator ∂ : c

(N)
p → ∂c

(N)
p , where

∂c
(N)
p is the boundary of c

(N)
p . Then the integral of type N generalized

p−forms,
p
a(N), over a poly-chain, c

(N)
p , will be defined in such a way that a

Stokes’ theorem ∫

c
(N)
p+1

d
p
a(N) =

∫

∂c
(N)
p+1

p
a(N), (18)

holds. The boundary operator ∂ will then be formally dual to the exterior

derivative d in the duality product 〈
p
a(N), c

(N)
p 〉 where

〈
p
a(N), c

(N)
p 〉 =

∫

c
(N)
p

p
a(N). (19)

This duality

〈d
p
a(N), c

(N)
p+1〉 = 〈

p
a(N), ∂c

(N)
p+1〉, (20)

will enable generalized complex(es) of chains in M , dual to the generalized de
Rham complex(es) of the previous section, to be constructed. The general
discussion of chain complexes that follows can be treated in greater generality,
but in this paper it suffices to think of ordinary real p−chains in M as formal
sums, cp =

∑
A rAMA, where rA ∈ R and the MA are smooth p−dimensional

sub-manifolds of M , [21].

First, when N = 0, choose c
(0)
p = cp, where cp is an ordinary p−chain

in M , and let ∂c
(0)
p be the oriented boundary of the p−chain cp. Here it is

assumed, as usual, that the ordinary chain complex is non-negative, so that
cp is the trivial chain 0 unless p is non-negative and the boundary of c0 is
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0. Such chains will be called ordinary chains. Type N = 1 poly-chains are
defined to be ordered pairs of ordinary p− and (p + 1)−chains, in M

c(1)
p = (cp, cp+1), (21)

and the boundary of the poly-chain c
(1)
p is defined to be

∂c(1)
p = (∂cp, ∂cp+1 + (−1)pǫcp). (22)

Here ∂cp and ∂cp+1 are the ordinary boundaries of the ordinary chains cp

and cp+1. Two cases, corresponding to the two classes of exterior derivative
discussed in the previous section, are considered, the first where ǫ = 0, and
the second where ǫ = 1. It is straightforward to see that in each case the
boundary of a boundary, ∂(∂c

(1)
p ), is zero.

Next, let
p
a(1) = (

p
α,

p+1
α ) be a type N = 1 generalized p−form on M .

Define the integral of
p
a(1)over c

(1)
p to be

∫

c
(1)
p

p
a(1) =

∫

cp

p
α +

∫

cp+1

p+1
α . (23)

From these definitions and by applying the ordinary Stokes’ theorem to the
ordinary forms it is a straightforward matter to see that

∫

c
(1)
p+1

d
p
a(1) =

∫

∂c
(1)
p+1

p
a(1). (24)

This is Stokes’ theorem for type N = 1 forms.

It follows from this that on an n dimensional manifold , if
n−1
a (1) = (

n−1
α ,

n
α),

then since c
(1)
n = (cn, 0) and ∂c

(1)
n = (∂cn, (−1)nǫcn),

∫

c
(1)
n

d
n−1
a (1) =

∫

∂cn

n−1
α + (−1)nǫ

∫

cn

n
α. (25)

The above definitions can be straightforwardly extended to any type N in
an iterative manner. Let N > 1 and assume that type (N − 1)−poly-chains

c
(N−1)
p have been defined, and can be non-trivial, for p ranging from −(N−1)

to n. A type N poly-chain c
(N)
p , p ≥ −N , is then determined by an ordered

pair of type (N − 1)−poly-chains

c(N)
p = (c(N−1)

p , c
(N−1)
p+1 ). (26)
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The boundary a type N > 1 poly-chain ∂c
(N)
p is defined to be

∂c(N)
p = (∂c(N−1)

p , ∂c
(N−1)
p+1 ). (27)

Again two cases are considered, case (i) where ǫ = 0 and case (ii) where ǫ = 1.

The boundary of a boundary is again zero, ∂2c
(N)
p = 0. In contrast to the

ordinary or type N = 0 chain complexes the definitions permit poly-chains
with p negative and p = 0 poly-chains with non-empty boundaries.

Let
p
a(N) = (

p
a(N−1),

p+1
a (N−1)) be a type N > 1 generalized p−form on M .

Continuing in the same iterative vein as above, define the integral of
p
a(N)

over c
(N)
p to be

∫

c
(N)
p

p
a(N) =

∫

c
(N−1)
p

p
a(N−1) +

∫

c
(N−1)
p+1

p+1
a (N−1). (28)

These definitions and results, and the ordinary Stokes’ theorem, lead to
Stokes’ theorem for generalized type N forms

∫

c
(N)
p+1

d
p
a(N) =

∫

∂c
(N)
p+1

p
a(N). (29)

If the abelian group of real poly-chains c
(N)
p is denoted C

(N)
p , then for each

choice of ǫ, the complex

0 ∂←− C
(N)
−N ... ∂←− C

(N)
p−1 ∂←− C(N)

p ... ∂←− C(N)
n ∂←− 0 (30)

is the generalized chain complex dual to the generalized de Rham complex
introduced in the previous section.

Following the standard terminology for ordinary, or type N = 0, chains,
call c

(N)
p a cycle when ∂c

(1)
p = 0 and a boundary when c

(1)
p = ∂c

(1)
p−1. The

set of type N cycles in M is the (N, p)−th cycle group and is denoted

Z
(N)
p (M), the set of type N boundaries on M is the (N, p)−th bound-

ary group and is denoted B
(N)
p (M) and the (N, p)−th homology group is

H
(N)
p (M) = Z

(N)
p (M)/B

(N)
p (M). When N = 0 these are the ordinary real

homology definitions for groups of chains in M . The homology groups are
isomorphic to the cohomological groups above for all N ≥ 0.

In case (i), where ǫ = 0, c
(N)
p is a cycle if and only if the N − 1 chains

c
(N−1)
p and c

(N−1)
p+1 are both cycles, and it is a boundary if and only if c

(N−1)
p

and c
(N−1)
p+1 are both boundary chains.
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In case (ii), where ǫ = 1, c
(1)
p is a cycle if and only if cp = (−1)p+1∂cp+1,

and then it is also a boundary, since c
(1)
p = ∂c̃

(1)
p+1, where c̃

(1)
p+1 = ((−1)p+1cp+1, 0).

When N > 1, c
(N)
p = (c

(N−1)
p , c

(N−1)
p+1 ) is a cycle if and only if c

(N−1)
p , c

(N−1)
p+1

are both cycles, and c
(N)
p is a boundary if and only if c

(N−1)
p and c

(N−1)
p+1 are

both boundaries. Furthermore c
(N)
p is a cycle if and only if it is a boundary.

In both cases ∂c
(N)
−N = 0. The following examples exhibit some properties

of certain type N = 1 and 2 poly-chains.
Example 3: Let N = 1 and consider a p = −1 poly-chain c

(1)
−1 = (0, c0).

Then, for both the first and second cases, ∂c
(1)
−1 = (0, 0).

On the other hand when ǫ = 0, the poly-chain c
(1)
−1 is a boundary if and

only if the ordinary chain c0 is a boundary, but if ǫ = 1, c
(1)
−1 is always the

boundary of c
(1)
0 = (c0, 0).

Next consider a type N = 1, p = 0 poly-chain c
(1)
0 = (c0, c1). When

ǫ = 0, c
(1)
0 is a cycle if and only if c1 is a cycle but c

(1)
0 is a boundary if and

only if c0 and c1 are both boundaries. On the other hand in case (ii), where

ǫ = 1, c
(1)
0 is a cycle if and only if c0 is a boundary and then c

(1)
0 = (−∂c1, c1).

A p = 0 poly-chain c
(1)
0 is a boundary if and only if it is a cycle.

Finally, if
−1
a (1) = (0,

0
α) is a degree minus one-form, then

∫
c
(1)
−1

−1
a (1) =

∫
c0

0
α,

and by Stokes’ theorem,
∫
c
(1)
0

d
−1
a (1) = ǫ

∫
c0

0
α +

∫
∂c1

0
α.

Example 4: Let N = 2, and consider the poly-chain c
(2)
p = (c

(1)
p , c

(1)
p+1).

Let c
(1)
p = (cp, c

1
p+1) and c

(1)
p+1 = (c2

p+1, cp+2), then c
(2)
p is the ordered quadruple

of ordinary chains given by one ordinary p−chain, two ordinary (p+1)−chains
and an ordinary (p + 2)−chain

c(2)
p = (cp, c

1
p+1, c

2
p+1, cp+2). (31)

In particular

c
(2)
−2 = (0, 0, 0, c0), (32)

c
(2)
−1 = (0, c1

0, c
2
0, c1),

c
(2)
0 = (c0, c

1
1, c

2
1, c2),

−−−−

c(2)
n = (cn, 0, 0, 0).
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The boundary of c
(2)
p is given by

∂c(2)
p = (∂cp, ∂c1

p+1 + (−1)pǫcp, ∂c2
p+1, ∂cp+2 + (−1)p+1ǫc2

p+1). (33)

In particular

∂c
(2)
−2 = (0, 0, 0, 0), (34)

∂c
(2)
−1 = (0, 0, 0, ∂c1 + ǫc2

0),

∂c
(2)
0 = (0, ∂c1

1 + ǫc0, ∂c2
1, ∂c2 − ǫc2

1),

−−−−

∂c(2)
n = (∂cn, (−1)nǫcn, 0, 0).

The poly-chain c
(2)
p is a cycle if and only if ∂cp = 0, ∂c1

p+1 = (−1)p+1ǫcp,

∂c2
p+1 = 0 and ∂cp+2 = (−1)pǫc2

p+1. In case (ii), where ǫ = 1, if c
(2)
p is a cycle

then it is also the boundary of c̃
(2)
p+1 = ((−1)p+1c1

p+1, 0, (−1)pcp+2, 0).

Finally if as in Example 1,
p
a(2) = (

p
α,

p+1
α 1,

p+1
α 2,

p+2
α ), then

∫

c
(2)
p

p
a(2) =

∫

cp

p
α +

∫

c1p+1

p+1
α 1 +

∫

c2p+1

p+1
α 2 +

∫

cp+2

p+2
α . (35)

4 The generalized second Chern class and the

Chern-Simons form

Generalized characteristic classes such as the Chern and Pontrjagin classes
have been previously introduced, by replacing ordinary forms by generalized
forms in the usual defining expressions, [4], [5], [11]. Here the generalized
second Chern class and the corresponding Chern-Simons form will be recon-
sidered using the Stokes’ theorem constructed in the previous section. The
results are easily extendable to other characteristic classes, such as those
considered in [11] for example. In the next section, their use in the con-
struction of Lagrangian field theories, also discussed in the latter papers, will
be demonstrated in the case of actions for the Einstein-Yang-Mills equations.

Consider a type N generalized connection, with values in the Lie algebra
g of a matrix Lie group G. The use of matrix representations is always
assumed. A generalized connection one-form, A(N), is a g-valued type N
generalized one-form. Its curvature two-form is

F(N)= dA(N) + A(N)A(N), (36)
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The covariant exterior derivative of a type N Lie algebra valued generalized
p−form Q(N) is defined to be

D(N)Q(N) = dQ(N) + A(N)Q(N) + (−1)p+1Q(N)A(N), (37)

and the curvature satisfies the Bianchi identities

D(N)F(N) = 0. (38)

The generalized second Chern class is determined by the generalized four-
form

CH(N) =
1

8π2
[Tr(F(N)F(N))− Tr(F(N))Tr(F(N))], (39)

and is equal to the exterior derivative of the generalized Chern-Simons three-
form CS(N) where

CS(N) =
1

8π2
[Tr(A(N)F(N)−

1

3
A(N)A(N)A(N))−Tr(A(N))d(TrA(N))]. (40)

More generally, if k(N) is any closed generalized zero-form, then

d(k(N)CS(N)) = k(N)CH(N). (41)

From the previous section it follows from Stokes’ theorem that
∫

c
(N)
4

CH(N) =

∫

∂c
(N)
4

CS(N). (42)

Next these geometrical objects are explored in greater detail when N = 1.
Let M be a manifold of dimension greater than or equal to five. Let A be a
type N = 1 connection one-form on M , with the trace of A, TrA, zero, and
let F be the curvature of A so that

A = α + βm, (43)

F = F + ǫβ + Dβm,

α and β are respectively one-forms and two-forms on M with values in a
matrix Lie algebra g, F = dα + αα; and Dβ = dβ + αβ − βα. The type
N = 1 generalized second Chern class is

CH =
1

8π2
[Tr(FF + 2ǫFβ + ǫββ) + d{Tr(FF + 2Fβ + ǫββ)}m]. (44)

14



If c
(1)
4 = (c4, c5) then, by Stokes’ theorem

∫

c
(1)
4

CH =
1

8π2
[

∫

c4

Tr(FF)+ ǫ

∫

c4

(2Fβ +ββ)+

∫

∂c5

Tr(FF +2Fβ + ǫββ)].

(45)
The first term on the right hand side is just the ordinary Chern class expres-
sion written in terms of the curvature two-form F .

When ǫ = 0 this takes the form
∫

c
(1)
4

CH =
1

8π2
[

∫

c4

Tr(FF) + 2

∫

∂c5

Tr(Fβ)], (46)

but when ǫ = 1 it is
∫

c
(1)
4

CH =
1

8π2

∫

c4+∂c5

[Tr(FF + 2Fβ + ββ)]. (47)

The type N = 1 Chern-Simons’ form is the generalized three-form

CS =
1

8π2
Tr[(αF −

1

3
ααα) + ǫαβ + (αDβ + βF − βαα + ǫββ)m], (48)

where the first term on the right hand side is the ordinary Chern-Simons
three-form. If c

(1)
3 = (c′3, c

′

4) it can be shown, by using Stokes’ theorem, that
∫

c
(1)
3

CS =
1

8π2
[

∫

c′3

Tr(αF−
1

3
ααα)+ǫ

∫

c′3

Tr(αβ)−

∫

∂c′4

Tr(αβ)+

∫

c′4

Tr(2βF+ǫββ)].

(49)
The first term on the right hand side is just ordinary Chern-Simons three-
form. When c

(1)
3 = ∂c

(1)
4 so that c′3 = ∂c4 and c′4 = ∂c5 + ǫc4, it follows from

the equations above that
∫

c
(1)
4

CH=

∫

∂c
(1)
4

CS (50)

=
1

8π2
[

∫

∂c4

Tr(αF −
1

3
ααα) +

∫

∂c5+ǫc4

Tr(2βF + ǫββ)].

The differential forms determining the generalized Chern classes are in-
variant under large type N = 1 ”generalized gauge groups”, [11], but when
they are used to construct Lagrangians by making particular choices of the
Lie algebra valued two-forms β such symmetries are broken down to the
smaller groups. An illustration of this is contained in the results of the next
section.
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5 Einstein-Yang-Mills as a generalized Chern-

Simons theory

The specific aim here is to construct actions for the Einstein-Yang-Mills field
equations by using the results of the previous sections. Rather than re-
doing calculations presented in [4], [5] and [11] - a straightforward matter
- a generalization of ordinary Chern-Simons theory will be constructed for
Einstein-Yang-Mills theory. It will be seen that these Chern-Simons actions
are similar to certain first order gravitational actions which have been the
subject of other investigations. Examples of such discussions, and many fur-
ther references, can be found in [13], [22]-[23]. However the general approach
taken here is novel and different from that taken in those papers.

Let the Yang-Mills Lie group G, assumed unimodular, have Lie algebra
g and let A be a so(p, q) ⊕ g valued type N = 1 connection one-form on a
manifold M . Since the immediate goal is to construct actions for four dimen-
sional Einstein-Yang-Mills theory, p + q = 4. The connection is represented
by a (r + 4)× (r + 4) matrix-valued one-form

A=

(
ωa

b + σa
b m 0

0 γi
j + ρi

jm

)
, (51)

The curvatures of A are

F =

(
(Ωa

b + ǫσa
b ) + Dω(σa

b )m 0

0 ̥i
j + ǫρi

j+Dγ(ρ
i
j)m

)
(52)

where

Ωa
b = dωa

b + ωa
c ω

c
b,

̥
i
j = dγi

j + γi
kγ

k
j .

The so(p, q) indices a, b, c.. sum and range from 1 to 4. A trace-free r×r ma-
trix representation of g, the Lie algebra of the Yang-Mills group is used and
the Yang-Mills indices i, j, k.. sum and range from 1 to r. Furthermore Dω is
the covariant exterior derivative with respect to the so(p, q)−valued connec-
tion one-form ωa

b on M , Dγ is the covariant exterior derivative with respect
to the g−valued connection one-form γi

j on M ; σa
b and ρi

j are respectively
so(p, q) and g-valued 2−forms on M .

Let G(1) be the group of (SO(p, q)×G)−valued type N = 1 zero-forms,

with elements {g(1) = (1 +
1
gm}

0
g}, where

0
g is an ordinary (SO(p, q) × G)
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valued zero-form and
1
g is an ordinary so(p, q) ⊕ g valued one-form. Then,

as was noted in [11], the generalized Chern four-form, CH = 1
8π2 Tr(FF), is

invariant under the ‘generalized gauge transformations’

A→ (g(1))
−1dg(1) + (g(1))

−1Ag(1), (53)

F→ (g(1))
−1Fg(1).

The generalized Chern-Simons three-forms, CS= 1
8π2 [Tr(AF− 1

3
AAA)],

constructed from this so(p, q)⊕ g valued generalized connection and its cur-
vatures are

CS = CS +
1

8π2
{ǫωa

b σ
b
a + [2σa

b Ω
b
a + ǫσa

b σ
b
a − d(ωa

b σ
b
a)]m} (54)

+
1

8π2
{ǫγi

jρ
j
i + [2ρi

j̥
j
i + ǫρi

jρ
j
i − d(γi

jρ
j
i )]m},

where

CS =
1

8π2
(ωa

b Ω
b
a −

1

3
ωa

b ω
b
cω

c
a + γi

j̥
j
i −

1

3
γi

jγ
j
kγ

k
i ) (55)

is the ordinary so(p, q) ⊕ g Chern-Simons three-form. If c
(1)
3 = (c3, c4) is a

type N = 1 poly-chain in M then, by Stokes’ theorem
∫

c
(1)
3

CS =

∫

c3

CS +
1

8π2

∫

ǫc3−∂c4

[ωa
b σ

b
a + γi

jρ
j
i ] (56)

+
1

8π2

∫

c4

[2(Ωa
bσ

b
a + ̥

i
jρ

j
i ) + ǫ(σa

b σ
b
a + ρi

jρ
j
i )].

In order to deal with metric geometries, four ordinary one-forms on M ,
{θa}, are introduced and the choice

σa
b = µθaθb +

ν

2
εa

bcdθ
cθd, (57)

where µ and ν are constants with ν non-zero, is made. When the one forms
{θa} are linearly independent on c4, as will be assumed here, they form an
orthonormal basis for a four-metric of signature (p, q),

ds2 = ηabθ
a ⊗ θb, (58)

(ηab) =

(
1p×p 0

0 −1q×q

)
.
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In the purely gravitational case, where the Yang-Mills field ̥i
j and the two-

forms ρi
j are zero, it is easy to show that now

∫

c
(1)
3

CS =

∫

c3

CS +
1

8π2

∫

ǫc3−∂c4

[ωa
b (µθbθa +

ν

2
εb

acdθ
cθd)] (59)

+
1

8π2

∫

c4

[νεb
acdΩ

a
bθ

cθd + 2µΩa
bθ

bθa] +
ǫ

8π2

∫

c4

[−4!µνV ],

where V = θ1θ2θ3θ4 is the volume four-form on c4. Here the relation,
εabefε

cdef = 2s(δc
aδ

d
b − δc

bδ
d
a), where s is −1 when the metric signature is

Lorentzian and +1 otherwise, has been used. With this choice of σa
b the

gauge group is reduced to the ordinary gauge group SO(p, q).
The generalized Chern-Simons integrals given by Eq.(59) can be inter-

preted as first order actions for the four-dimensional Einstein vacuum field
equations, with and without a cosmological constant term. The different
cases, and the individual terms in the integrands, are explored in the discus-
sion of the Einstein-Yang-Mills system below.

The construction of similar results for the coupled Einstein-Yang-Mills
system requires an appropriate choice of the two-forms ρj

i . When M is
taken to be four dimensional, and the one-forms {θa} form a basis co-frame
on M , the two-forms ρi

j can be taken to be

ρi
j = τ̥

i
j + κ∗

̥
i
j, (60)

where τ and κ are constants and ∗̥i
j is the Hodge dual of the Yang-Mills

field two-form ̥i
j. With the intrinsically different choices of the two-forms

σa
b and ρi

j given by Eqs.(57) and (60), the gauge group is reduced from
G(1) to SO(p, q) × G. By using Eqs.(57), (58) and (60) in Eq.(54) the
generalized Chern-Simons three-form, CSEYM is obtained from CS, and the
Chern-Simons expression given by Eq.(56) becomes

∫

c
(1)
3

CSEYM =

∫

c3

CS +
1

8π2

∫

ǫc3−∂c4

[ωa
b (µθbθa +

ν

2
εb

acdθ
cθd) + γi

j(τ̥
j
i + κ∗

̥
j
i )]

(61)

+
1

8π2

∫

c4

[νεb
acdΩ

a
bθ

cθd + 2κ̥
i∗
j ̥

j
i + 2τ̥

i
j̥

j
i + 2µΩa

bθ
bθa]

+
ǫ

8π2

∫

c4

[−4!µνV + 2τκ̥
i∗
j ̥

j
i + (τ 2 + sκ2)̥i

j̥
j
i ].
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In the first case, where ǫ = 0, it follows from Eq.(61) that the integral of

CSEYM, over the poly-chain in M , c
(1)
3 = (c3, c4), is

∫

c
(1)
3

CSEYM =
1

8π2

∫

c4

[νεb
acdΩ

a
bθ

cθd + 2κ̥
i∗
j ̥

j
i + 2µΩa

bθ
bθa + 2τ̥

i
j̥

j
i ] (62)

+

∫

c3

CS −
1

8π2

∫

∂c4

[
ν

2
ωa

b ε
b
acdθ

cθd + µωa
b θ

bθa + κγi∗
j ̥

j
i + τγi

j̥
j
i ].

When ∂c4 = 0 this has the form of a known action for the Einstein-
Yang-Mills field equations, with zero cosmological constant, plus an ordinary
Chern-Simons contribution given by the second integral. The first two terms
in the integral over c4, are the standard Ricci scalar and Yang-Mills term.
The third term has been discussed by Holst, [22]. When the Euler-Lagrange
equations are satisfied and the connection form ωa

b is identified as the Levi-
Civita spin connection, the contribution from this term vanishes by the first
Bianchi identities. The fourth term, the Yang-Mills second Chern class term,
makes no contribution when ∂c4 = 0.

In the second case, where ǫ = 1,

∫

c
(1)
3

CSEYM (63)

=
1

8π2

∫

c4

[νεb
acdΩ

a
bθ

cθd + 2µΩa
bθ

bθa − 4!µνV + (2κ + 2τκ)̥i∗
j ̥

j
i + (2τ + τ 2 + sκ2)̥i

j̥
j
i ]

+

∫

c3

CS +
1

8π2

∫

c3−∂c4

[
ν

2
ωa

b ε
b
acdθ

cθd + µωa
b θ

bθa + κγi∗
j ̥

j
i + τγi

j̥
j
i ].

This can also be identified as an action for the Einstein-Yang-Mills field
equations. The integral over c4 contains the usual Ricci scalar, the term
included by Holst and, when µν is non-zero, a non-zero cosmological constant
term. It also contains the usual Yang-Mills term plus a second Chern class
Yang-Mills term. The latter term could also be written as the ordinary Yang-
Mills Chern-Simons three form integrated over the boundary of c4. The
integral over the three-chain c3 is the ordinary Einstein-Yang-Mills Chern-
Simons term. The integrand is, as before, given by Eq.(55). The terms in
the integral over the three-chain c3− ∂c4 all arise in formally similar ways in
this approach. Of course they do not enter into consideration if either c3−∂c4

is trivial or they vanish because of boundary conditions. However when c3 =
−∂c4 the first term is required when first order actions and asymptotically
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flat systems are considered. This point is discussed in detail in reference
[13].

In the approach taken in this section both the similarities and differ-
ences of the gravitational and gauge fields are highlighted. Here the four
dimensional Einstein-Yang-Mills actions are intrinsically four dimensional in
a way that the vacuum Einstein actions are not. In addition, in the vacuum
Einstein case the bulk manifold M need not be metric.

6 Conclusion

It has been shown that by introducing the notion of poly-chains, integrals of
generalized forms and a generalization of Stokes’ theorem for ordinary forms
can been constructed. This formalism can be exploited wherever integrals
are considered. In particular, the usual approach via ordinary differential
forms to characteristic classes can be extended within this new context. A
generalization of the second Chern class and the Chern-Simons three-form
have been considered here by using the simplest type of generalized forms.
Extensions to other characteristic classes and other types of generalized forms
can easily be made.

Generalized characteristic classes have been used previously to formulate
actions for topological and other field theories. The relationship between
such actions and generalized characteristic classes can now be investigated
more completely and for different Lagrangian theories in different dimensions.
In general actions will be determined by integrals on a number of chains, or
manifolds, of differing dimensions, and they will include boundary integrals
in a natural way.

In this paper actions for the Einstein-Yang-Mills field have been reformu-
lated, in a novel geometrical context, by using the generalized Chern-Simons
three-form. The resulting actions include integrals over both four and three
dimensional manifolds. Certain well-known boundary terms appear more
naturally than in the usual approaches which do not use generalized forms.
Altogether, the framework provided by generalized forms and generalized
characteristic classes gives a new and unified way of looking at, and hence
investigating, a wide range of field theories.

Acknowledgement: I would like to thank Luke Hodgkin for a helpful
comment and suggestion.
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