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Abstract: Generalized differential forms are employed to construct gen-
eralized connections. Lorentzian four-metrics determined by certain of these
connections satisfy Einstein’s vacuum field equations when the connections
are flat. Generalized Chern-Simons action principles with Einstein’s equa-
tions as Euler-Lagrange equations are constructed by using these connections.

1 Introduction

Chern-Simons gravity and related topics have been the subject of extensive
investigation since the 1980’s. Following pioneering papers such as [1]- [4],
most of that research has dealt with gravity in 2+1 dimensions. In three
dimensions source free general relativity, with or without a cosmological con-
stant, can be interpreted as Chern-Simons theories of the relevant structure
group and the field equations correspond to the vanishing of the relevant
curvature tensor. Reviews of that line of research can be found in [5] and a
recent broad ranging discussion is given in [6]. Chern-Simons approaches to
gravity in higher dimensions have also been discussed, although to a lesser
extent, as for example, in [7], and aspects of that work are reviewed in [§]



and [9]. In this paper a different approach is followed in that the formalism
of generalized forms is used to construct generalized Chern-Simons actions
for the four dimensional Einstein vacuum field equations with non-zero cos-
mological constant. This type of approach, using generalized generalized
characteristic classes and generalized Chern-Simons forms, was initiated in
[10] and [11] and was subsequently developed in [12]- [14]. The main new re-
sult in this paper is the construction of a Palatini type Lagrangian for gravity
from a generalized Chern-Simons integral by using a generalized connection
which is flat when the field equations are satisfied. In order to do this results
presented in [14] are extended from type N = 1 to type N = 2 generalized
forms.

In sections two and three properties of type N = 2 forms, generalized
connections and generalized Chern-Simons integrals are outlined. Much of
the material in these sections has been presented elswhere but it is included
in order to make this paper reasonably self-contained. In section four at-
tention is concentrated on type N = 2 generalized connections with values
in the Lie algebras of SO(p,q), where p + ¢ = 5. These connections are
defined on manifolds of dimension six or greater. When they are pulled
back to (boundary) four dimensional manifolds, and a regularity condition
is satisfied, they define Lorentian metrics there. In that case when the gen-
eralized curvature of the SO(p, q¢) connections vanishes these metrics satisfy
Finstein’s vacuum field equations with non-zero cosmological constant. The
connections are also used to construct a parametrized family of gravitational
actions from generalized Chern-Simons integrals. These actions have Ein-
stein’s equations as Euler-Lagrange equations.

It will be assumed that all geometrical objects are smooth and M is an
n—dimensional real, smooth, orientable and oriented manifold. Bold-face
Roman letters are used to denote generalized forms and ordinary forms on
M are usually denoted by Greek letters. Sometimes the degree of a form
is indicated above it. The exterior product of any two forms, for example
a and f, is written o, and as usual, any ordinary p—form gz, with p either
negative or greater than n, is zero. The Einstein summation convention is
used.



2 Type N=2 generalized differential forms

In this section the properties of type N = 2 differential forms on an n dimen-
sional manifold M that are needed in this paper are reviewed. The notation
of [12] and [13] is again used. Further discussion of type N = 2 forms can
be found in [15] and [16].

Type N = 2 generalized forms constitute a module AZ2) =3 5 Aé)
and obey the same algebraic and differential relations as ordinary forms. In

particular if rand § € Aé) and A‘(ZQ) are respectively a p—form and a ¢—form,

thenr § = (—1)pqg{)‘. A basis for type N = 2 generalized forms consists of any
basis for ordinary forms on M augmented by a pair of linearly independent
minus one-forms {m’} (i,7 = 1,2). Minus one-forms have the algebraic
properties of ordinary exterior forms but are assigned a degree of minus one.
They satisfy the ordinary distributive and associative laws of exterior algebra
and the exterior product rule

%mi = (—1)pmiz; m'm’ = —m’m". (1)

together with the condition of linear independence. For a given choice of
{m'}, a type N = 2 generalized p-form, g, can be written as

F=p+"p m +"p m'm?, (2)

1 p+l p+2
where f),p; i,p; i’p; are ordinary forms, respectively a p—form, two (p +
1)—forms and a (p + 2)—form. Hence, given a linearly independent pair

{m'}, I is determined by an ordered quadruple of ordinary differential forms

(3)

When it is assumed that the exterior derivative, d, of generalized forms
satisfies the usual properties, in particular d> = 0, and that the exterior
derivative of any basis minus one form is a type N = 2 generalized zero
form, that is

p p p+l1 p+l p+2
r=(p, p1, P P)

SRR N N B S T
dm' = p' —v;m’ + p'm m

where 4/, vt and p’ are respectively zero- one- and two-forms, it is a straight-

forward matter to show that the freedom in the choice of basis minus one-

forms,
m' — (A_l)}m] + T'm'm?,

3



where the determinant of the matrix-valued function A is non-zero and Y*
are one-forms, can be used to construct a basis of minus one-forms satisfying

dm’ = €', (4)

where ¢! and e2are constants, [12].
In this paper bases satisfying Eq.(4), with at least one of the constants
non-zero, will be used. It then follows that the exterior derivative of a type

N = 2 generalized p—form T is the (p + 1)—form

dt = dp+ (=17 piet + (@), + (=17 )m'+ (5)
(@ + (1P m? + &y mim?

where d is the ordinary exterior derivative when acting on ordinary forms.
The exterior derivative d : Al (M) — 7(”;)1 (M) is an anti-derivation of degree
one,

d(rs) = (dr)s 4 (—1)Prds, (6)
d? =

and (Afy (M), d) is a differential graded algebra.

If ¢ is a smooth map between manifolds P and M, ¢ : P — M, then the
induced map of type N = 2 generalized forms, ¢, : Ay (M) — A{y (P), is
the linear map defined by using the standard pull-back map, *, for ordinary
forms

oy () = " (D) + ¢ (p )m’ + ¢ (") m'm?, (7)

and @, (rS) = ¢ty (T)¢ly (S). Hence of, (m') = m'.

Integration is defined using polychains, [13]. A p—polychain of type
N =2 in M, denoted c, is an ordered quadruple of ordinary (real, singular)
chains in M

¢, = (¢p, C;1>+1a C;2z+17 Cp+2), (8)

where ¢, is an ordinary p—chain, ¢} 541 and c? 541 are ordinary p + 1—chains
and ¢, is and ordinary ordinary p 4+ 2—chain. The ordinary chains bound-
aries are denoted by O and the boundary of the polychain c, is the (p —
1)—polychain Jc, given by

(9¢p, Ocy 1 +(=1)Pe ey, Ocy 1 H(=1)P €%y, Dcprat (= 1) ey +H(=1)P el Ly),
(9)



and
d%c, = 0. (10)

When N = 2 the integral of a generalized form I over a polychain c,, is

P P p+1 p+1 p+2
/rz/(p+/ p1+/ p2+/ P (11)
Cp Cp Cgl,+1 01274—1 pt2
/

P

and Stokes’ theorem applies

d”?:/ "y (12)
dcp

Under a change of basis minus one-forms m! and m?
i i g
m’ — Tim’, (13)

where (T7) is a constant matrix and T= det(7?) is non-zero,

¢ Tie. (14)

and the components of t transform as

(p p+1 p+l1 p+2 g+l g+l 71p+2)

PP 1, P P ) (Za (T71)1 P (T71)2 P (T p (15)

The form of the right hand side of Eq.(11) is then preserved if the components
of ¢, transform as

(Cp7 01194-1? Cz2u+1> CP+2) = (Cp> (T);C;+1’ (T)§C';+1> Tcp+2)' (16)

In the following sections the usual definitions will be extended to admit
complex coefficients and the complex (and complex conjugate) combinations

m = ¢ '(m'! +im?), (17)
e (m' —im?),

€ =€ +ie?,

m

which satisfy
dm =dm = 1, (18)

will be used.



Just as the algebra and differential calculus of ordinary differential forms
on M can be expressed in terms of functions and vector fields on the reverse
parity tangent bundle, IIT'M, of M, [17], [18], generalized forms can be
represented in terms of functions and vector fields on the Whitney sum of
I[TT'M and a trivial reverse parity line bundle over M. For type N = 2 forms
the latter is a trivial bundle with fibre R? replaced by R%2. Further details
about this and type N generalized form-valued vector fields are in [19].

3 Type N=2 generalized connections

A generalized connection A with values in the Lie algebra, g, of a matrix
Lie group G is defined in essentially the same way as ordinary connections,
as for example described in [20], except that ordinary forms are replaced by
generalized forms. In this paper it will be sufficient to use matrix represen-
tations of Lie groups and Lie algebras and connections will be represented by
matrix-valued generalized forms on M. The primary focus will be on real
generalized connection forms. A, but generalization to complex generalized
connection forms is trivial.

Under a gauge transformation by g : M — G a g-valued generalized
connection one-form transforms in the usual way

A = (g7")dg + (97")Ag (19)
The generalized curvature two-form F is the generalized two-form
F=dA + AA, (20)
Under the transformation in Eq.(19)
F — (97')Fg. (21)

In terms of the complex basis introduced in Eq.(17) above a type N = 2
connection one-form can be written as

A =a — ¢gm—¢m + iymm, (22)

where for real A, « and 7 are, respectively, a real ordinary g-valued one-form
and three-form on M and ¢ is an ordinary complex g-valued two-form with



complex conjugate ¢. The curvature two-form is
F=F—¢—6—(D¢ —ix)m — (D¢ +ix)m + (iDx + ¢ — $¢)mmm,
(23)
F =da+ aaq,
Dp = dp+ ap+ (=1)*pa.

The generalized curvature two-form is zero if and only if the generalized
connection can be written in the form

1 1 '
A=a- 5(]—"+ir)m—§(}"—i7)ﬁ + %DTmﬁ, (24)

where, for real A, 7 is an arbitrary real g—valued two-form.

Henceforth in this paper it will be assumed, unless stated otherwise, that
a connection A has zero trace, TrA = 0.

The generalized Chern-Pontrjagin class is determined by a generalized
four-form CP

CP — L Ty(FF), (25)

812
which is equal to the exterior derivative of the generalized Chern-Simons
three-form CS

1 1
CS = 5 Tr(AF — ZAAA), (26)

2
By Stokes’ theorem, Eq.(12), for a polychain ¢4

/04 CPz/{m CS (27)

and when c3 = dcy under the gauge transformation given by Eq.(19)

/CS —>/ CS.
c3 c3

Using the generalized connection A given in Eq.(22)

CS=II + Am + Am + Emm



where

1 1 —

1= @Tr{oz]: — gaaoz —alp+ )}, (28)
A = #TT{d)(é +0)) + d(ag) — 20F +iax},

A= L Tr(d(6+9)) + d(ad) — 20F — iax},
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iTr{éng — ¢Do + 2i(F — ¢ — &) x},

82

—_—
—
—

and

/804 CS:/864H+/C4(A+Z)+ (29)
—l—(6%)‘1[/86%(EA+GZ)—i—i/acg(EA—eZ)+2/ 7.

2.1_ 1.2
Ocg+ecs—elcg

In the following section type N = 2 Chern-Simons integrals for a boundary
polychain c3 = dcy will be used as action integrals.

4 Connections, metrics and gravity

In this section certain type N = 2 generalized connections A, on an n = 6
dimensional manifold M will be considered. The general formalism follows
that in [14] where type N = 1 forms were used. The connections will be
represented by a 5 x 5 matrix-valued generalized one-forms

[ A} —0cA“
A= ( A, 0 ) ) (30)
and take values in the Lie algebra, g, of G, where G is SO(3 + 1,1) when

oc=1;50(3,141) when 0 = —1 and ISO(3,1) when ¢ = 0. In the first
two cases, which will be of primary interest here, the metric is given by the

5 X b matrix
w0
(). (31)

Nay = diag(—1,1,1,1)



and A, = m, A% Latin indices ranging and summing from 1 to 4. The
generalized curvature of A is given by

F—dA+AA—<£§ _%F) (32)
where
F, =dA, + AJA; — 0 A"Ay, (33)
F* = dA® + AYA°, Fy =, Fe.
Now let
Ap == (90— 7 SHm - (-7 sm, (34)
1
A" = 70“,
where [ is a non-zero constant, w,, = —wy, are ordinary real one-forms and
0 are four real ordinary one-forms on M. Furthermore if
Q= dwy + wowy (35)

denotes the curvature of w (regarded as an ordinary connection) then Qg
are respectively the so(3, 1) self-dual and anti-self dual parts of 2. That is

1 .
iQab - §(Qab +1 Qab)a (36)
where *Q,, = %sabchCd and the totally skew symmetric Levi-Civita symbol
satisfies £1934 = 1. Furthermore $% = 0¢0® and *X% denote its so(3,1) self
and anti-self dual parts =X = (5% F i*2%),
Then for this connection the curvature F in Eq.(32) is given by

S

F{ = — (D X%m + D*x%m), (37)

0~ o 0T way e
2 5)60"m + (+Qb_l_2 56 m],
Here the covariant exterior derivative with respect to wj' is denoted D so that
DO = df” + wie®, (38)
D *5y = d*5y + wi TX - Tl
= d*3p +F W FTf - T8 Fwy,

F* = (D6 + (~Qf —

~l=%



where *w = 1(w® F i*w™) respectively denote the so(3,1) self-dual and

anti-self dual parts of wy.
The generalized connection A is flat if and only if F = 0 and then

D" =0, (39)
(TQ — l2 7 -5 = 0,
(TQf — - T¥90° = 0.
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Suppose now that when the 4 ordinary one-forms {6*} are pulled back to
a four dimensional sub-manifold S C M they are linearly independent and
so form an orthonormal basis for a Lorentzian metric ds? = 1,0 ® 6° there.
Then when Eq.(39) is satisfied it follows that this metric satisfies Einstein’s
vacuum field equations on S with cosmological constant A =

In passing it is interesting to note the sub-case of the complex connection
asaA given by Eq.(30) with o = 0 and

asdAy = “wp — Tym; gqAg =04 Qy =d wp + "Wl T wy (40)
with curvature .5 F given by
asaFy =0, (41)
asdFa = df, + “wapl’ + ~Qap6’m,

If this generalized connection is flat the (complex) metric, ds? = 1,,0°®0°,
determined analogously to the real four-metric above, is half flat with anti-
self dual curvature ~€2f.

For the connection and curvature given by Egs.(30), (32) and (33) the
generalized Chern-Pontrjagin and Chern-Simons forms are

+

1
CP:8—[F“Fb — 20F°F,] (42)
CS=— Q[A“Fb 3A§A§A;—20A“Fa+aAgAbAa].
Computation, using Eqgs.(34) and (37) gives
1 1 u
CS:8 2{——wbw ws + l2w 26°0, — l2 0 Do+ (43)
1d - .a —, b — 3 - .a _Zb 20 -0 Zab 2 Qaebgced
+ [g (Twh w, wg — 2 Y )~ 7z e + 4_l45abcd jm
+ [1d( +0¢ T b +,¢ — 32 +,® +Zb ) 20 +Q Eab 25 b d@a@beced]m}
3 b o T b el 414

10



Using Eq.(17) and integrating over a boundary polychain c; = Jcy, as in
Eq.(9) with p = 4, gives

o
CS= {—[| 0°Do, — / QX+ (44)
/cv3 422 Oca c4
— / [Z'F&z( +QabEab — ’Qabﬁab — %gabcdﬁae%cﬁd) + leabE“b]
80%
+ / [k (T QY™ — QX% — %gabcdmebeced) — K22}
30?
where . )
,‘{'/1 frg E— ,{/2 e 6_
€€’ €€

Now consider this expression as a generalized Chern-Simons action in-
tegral and the case where the four ordinary one-forms {6} are linearly in-
dependent on the four dimensional sub-manifolds (chains), ¢4, dctand OcZ.
Since the one forms constitute an orthonormal basis there for a Lorentzian
metric ds? = 1,0 ® 6° this action can now be rewritten as

o
CS= {— / 0° Do, — / Qa0 0"+ (45)
/03 4] Jcy c4
— / [K*(R — 20V + k'Qyp X+
80%

+ / [KYR — 20V — k*Qu X},
acg

where on dciand Oc?

1
9 = SR.0°0", R = 1" Ry, (46)
V = 0026304, A =

30

l2

and the action terms there correspond to the usual first order (Palatini)
Einstein-Hilbert action terms augmented by the term proportional to 2., %%,
[21]

On the boundary manifolds dciand dcZ the Euler-Lagrange equations are
Einstein’s vacuum field equations, (Gab—i—Anab)H“@Gb = 0, with cosmological

11



constant A = ?;—;f In addition the variation of the first two terms gives

5(— / 6° D, — / Qup0°0°) = —2 | 66°DO, + / 200" Q0" — 6w D(06y).
864 c4 8C4=

“ (47)
When the geometry of the submanifolds is specified in more detail these
results can be interpreted more completely.

In conclusion it should be noted that the use of an anti-deSitter/deSitter
connection, invariant only under the Lorentz group, in an action principle
with the Einstein field equations as Euler Lagrange equations dates from
the late 1970’s, [22], [23] and[24]. However the approach, initiated in these
papers, which has recently been interpreted in terms of Cartan geometries,
[25], is different from the one taken here.
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