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Abstract: Generalized differential forms are employed to construct gen-
eralized connections. Lorentzian four-metrics determined by certain of these
connections satisfy Einstein’s vacuum field equations when the connections
are flat. Generalized Chern-Simons action principles with Einstein’s equa-
tions as Euler-Lagrange equations are constructed by using these connections.

1 Introduction

Chern-Simons gravity and related topics have been the subject of extensive
investigation since the 1980’s. Following pioneering papers such as [1]- [4],
most of that research has dealt with gravity in 2+1 dimensions. In three
dimensions source free general relativity, with or without a cosmological con-
stant, can be interpreted as Chern-Simons theories of the relevant structure
group and the field equations correspond to the vanishing of the relevant
curvature tensor. Reviews of that line of research can be found in [5] and a
recent broad ranging discussion is given in [6]. Chern-Simons approaches to
gravity in higher dimensions have also been discussed, although to a lesser
extent, as for example, in [7], and aspects of that work are reviewed in [8]
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and [9]. In this paper a different approach is followed in that the formalism
of generalized forms is used to construct generalized Chern-Simons actions
for the four dimensional Einstein vacuum field equations with non-zero cos-
mological constant. This type of approach, using generalized generalized
characteristic classes and generalized Chern-Simons forms, was initiated in
[10] and [11] and was subsequently developed in [12]- [14]. The main new re-
sult in this paper is the construction of a Palatini type Lagrangian for gravity
from a generalized Chern-Simons integral by using a generalized connection
which is flat when the field equations are satisfied. In order to do this results
presented in [14] are extended from type N = 1 to type N = 2 generalized
forms.
In sections two and three properties of type N = 2 forms, generalized

connections and generalized Chern-Simons integrals are outlined. Much of
the material in these sections has been presented elswhere but it is included
in order to make this paper reasonably self-contained. In section four at-
tention is concentrated on type N = 2 generalized connections with values
in the Lie algebras of SO(p, q), where p + q = 5. These connections are
defined on manifolds of dimension six or greater. When they are pulled
back to (boundary) four dimensional manifolds, and a regularity condition
is satisfied, they define Lorentian metrics there. In that case when the gen-
eralized curvature of the SO(p, q) connections vanishes these metrics satisfy
Einstein’s vacuum field equations with non-zero cosmological constant. The
connections are also used to construct a parametrized family of gravitational
actions from generalized Chern-Simons integrals. These actions have Ein-
stein’s equations as Euler-Lagrange equations.
It will be assumed that all geometrical objects are smooth and M is an

n−dimensional real, smooth, orientable and oriented manifold. Bold-face
Roman letters are used to denote generalized forms and ordinary forms on
M are usually denoted by Greek letters. Sometimes the degree of a form
is indicated above it. The exterior product of any two forms, for example
α and β, is written αβ, and as usual, any ordinary p−form p

α, with p either
negative or greater than n, is zero. The Einstein summation convention is
used.
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2 Type N=2 generalized differential forms

In this section the properties of type N = 2 differential forms on an n dimen-
sional manifoldM that are needed in this paper are reviewed. The notation
of [12] and [13] is again used. Further discussion of type N = 2 forms can
be found in [15] and [16].
Type N = 2 generalized forms constitute a module Λ•(2) = Σn

p=−2 Λp
(2)

and obey the same algebraic and differential relations as ordinary forms. In
particular if

p
rand

q
s ∈ Λp

(2) and Λq
(2) are respectively a p−form and a q−form,

then
p
r
q
s = (−1)pq

q
s
p
r. A basis for typeN = 2 generalized forms consists of any

basis for ordinary forms on M augmented by a pair of linearly independent
minus one-forms {mi} (i, j = 1, 2). Minus one-forms have the algebraic
properties of ordinary exterior forms but are assigned a degree of minus one.
They satisfy the ordinary distributive and associative laws of exterior algebra
and the exterior product rule

p
ρmi = (−1)pmi pρ; mimj = −mjmi. (1)

together with the condition of linear independence. For a given choice of
{mi}, a type N = 2 generalized p-form,

p
r, can be written as

p
r =

p
ρ+

p+1
ρ im

i +
p+2
ρ m1m2, (2)

where
p
ρ,

p+1
ρ i,

p+1
ρ i,

p+2
ρ are ordinary forms, respectively a p−form, two (p +

1)−forms and a (p + 2)−form. Hence, given a linearly independent pair
{mi}, pr is determined by an ordered quadruple of ordinary differential forms

p
r = (

p
ρ,

p+1
ρ 1,

p+1
ρ 2,

p+2
ρ ). (3)

When it is assumed that the exterior derivative, d, of generalized forms
satisfies the usual properties, in particular d2 = 0, and that the exterior
derivative of any basis minus one form is a type N = 2 generalized zero
form, that is

dmi = µi − νijmj + ρim1m2

where µi, νij and ρ
i are respectively zero- one- and two-forms, it is a straight-

forward matter to show that the freedom in the choice of basis minus one-
forms,

mi 7→ (Λ−1)ijm
j + Υim1m2,
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where the determinant of the matrix-valued function Λ is non-zero and Υi

are one-forms, can be used to construct a basis of minus one-forms satisfying

dmi = εi, (4)

where ε1 and ε2are constants, [12].
In this paper bases satisfying Eq.(4), with at least one of the constants

non-zero, will be used. It then follows that the exterior derivative of a type
N = 2 generalized p−form p

r is the (p+ 1)−form

d
p
r = d

p
ρ+ (−1)p+1ρiε

i + (d
p+1
ρ 1 + (−1)p+1ε2

p+2
ρ )m1+ (5)

+ (d
p+1
ρ 2 + (−1)pε1

p+2
ρ )m2 + d

p+2
ρ m1m2

where d is the ordinary exterior derivative when acting on ordinary forms.
The exterior derivative d : Λp

(2)(M)→ Λp+1
(2) (M) is an anti-derivation of degree

one,

d(
p
r
q
s) = (d

p
r)
q
s+ (−1)p

p
rd

q
s, (6)

d2 = 0.

and (Λ•(2)(M), d) is a differential graded algebra.
If ϕ is a smooth map between manifolds P and M, ϕ : P →M, then the

induced map of type N = 2 generalized forms, ϕ∗(2) : Λp
(2)(M) → Λp

(2)(P ), is
the linear map defined by using the standard pull-back map, ϕ∗, for ordinary
forms

ϕ∗(2)(
p
r) = ϕ∗(

p
ρ) + ϕ∗(

p+1
ρ i)m

i + ϕ∗(
p+2
ρ )m1m2, (7)

and ϕ∗(2)(
p
r
q
s) = ϕ∗(2)(

p
r)ϕ∗(2)(

q
s). Hence ϕ∗(2)(m

i) = mi.
Integration is defined using polychains, [13]. A p−polychain of type

N = 2 in M , denoted cp is an ordered quadruple of ordinary (real, singular)
chains in M

cp = (cp, c
1
p+1, c

2
p+1, cp+2), (8)

where cp is an ordinary p−chain, c1p+1 and c2p+1 are ordinary p + 1−chains
and cp+2 is and ordinary ordinary p+ 2−chain. The ordinary chains bound-
aries are denoted by ∂ and the boundary of the polychain cp is the (p −
1)−polychain ∂cp given by

(∂cp, ∂c
1
p+1+(−1)pε1cp, ∂c

2
p+1+(−1)pε2cp, ∂cp+2+(−1)pε2c1p+1+(−1)p−1ε1c2p+1),

(9)
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and
∂2cp = 0. (10)

When N = 2 the integral of a generalized form
p
r over a polychain cp is∫

cp

p
r =

∫
cp

(
p
ρ+

∫
c1p+1

p+1
ρ 1 +

∫
c2p+1

p+1
ρ 2 +

∫
cp+2

p+2
ρ . (11)

and Stokes’theorem applies ∫
cp

d
p−1
r =

∫
∂cp

p−1
r . (12)

Under a change of basis minus one-forms m1 and m2

mi 7→ T ijm
j, (13)

where
(
T ij
)
is a constant matrix and T= det

(
T ij
)
is non-zero,

εi 7→ T ij ε
j. (14)

and the components of
p
r transform as

(
p
ρ,

p+1
ρ 1,

p+1
ρ 2,

p+2
ρ ) 7→ (

p
ρ, (T−1)j1

p+1
ρ j, (T

−1)j2
p+1
ρ j, (T

−1p+2ρ ). (15)

The form of the right hand side of Eq.(11) is then preserved if the components
of cp transform as

(cp, c
1
p+1, c

2
p+1, cp+2) 7→ (cp, (T )1jc

j
p+1, (T )2jc

j
p+1, T cp+2). (16)

In the following sections the usual definitions will be extended to admit
complex coeffi cients and the complex (and complex conjugate) combinations

m = ε−1(m1 + im2), (17)

m = ε−1(m1 − im2),

ε = ε1 + iε2,

which satisfy
dm =dm = 1, (18)

will be used.
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Just as the algebra and differential calculus of ordinary differential forms
on M can be expressed in terms of functions and vector fields on the reverse
parity tangent bundle, ΠTM , of M , [17], [18], generalized forms can be
represented in terms of functions and vector fields on the Whitney sum of
ΠTM and a trivial reverse parity line bundle overM . For type N = 2 forms
the latter is a trivial bundle with fibre R2 replaced by R0|2. Further details
about this and type N generalized form-valued vector fields are in [19].

3 Type N=2 generalized connections

A generalized connection A with values in the Lie algebra, g, of a matrix
Lie group G is defined in essentially the same way as ordinary connections,
as for example described in [20], except that ordinary forms are replaced by
generalized forms. In this paper it will be suffi cient to use matrix represen-
tations of Lie groups and Lie algebras and connections will be represented by
matrix-valued generalized forms on M . The primary focus will be on real
generalized connection forms. A, but generalization to complex generalized
connection forms is trivial.
Under a gauge transformation by g : M → G a g-valued generalized

connection one-form transforms in the usual way

A→ (g−1)dg + (g−1)Ag (19)

The generalized curvature two-form F is the generalized two-form

F = dA+AA, (20)

Under the transformation in Eq.(19)

F→ (g−1)Fg. (21)

In terms of the complex basis introduced in Eq.(17) above a type N = 2
connection one-form can be written as

A = α− φm−φm+ iχmm, (22)

where for real A, α and τ are, respectively, a real ordinary g-valued one-form
and three-form on M and φ is an ordinary complex g-valued two-form with
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complex conjugate φ. The curvature two-form is

F = F − φ−φ−(Dφ− iχ)m− (Dφ+ iχ)m+ (iDχ+ φφ− φφ)mm,
(23)

F = dα + αα,

D
p
ρ = d

p
ρ+ α

p
ρ+ (−1)p+1

p
ρα.

The generalized curvature two-form is zero if and only if the generalized
connection can be written in the form

A =α− 1

2
(F+iτ)m−1

2
(F−iτ)m+

i

2
Dτmm, (24)

where, for real A, τ is an arbitrary real g−valued two-form.
Henceforth in this paper it will be assumed, unless stated otherwise, that

a connection A has zero trace, TrA = 0.
The generalized Chern-Pontrjagin class is determined by a generalized

four-form CP

CP =
1

8π2
Tr(FF), (25)

which is equal to the exterior derivative of the generalized Chern-Simons
three-form CS

CS =
1

8π2
Tr(AF− 1

3
AAA). (26)

By Stokes’theorem, Eq.(12), for a polychain c4∫
c4

CP =

∫
∂c4

CS (27)

and when c3 = ∂c4 under the gauge transformation given by Eq.(19)∫
c3

CS→
∫
c3

CS.

Using the generalized connection A given in Eq.(22)

CS=Π + ∆m+ ∆m+ Ξmm
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where

Π =
1

8π2
Tr{αF − 1

3
ααα− α(φ+ φ)}, (28)

∆ =
1

8π2
Tr{φ(φ+ φ)) + d(αφ)− 2φF + iαχ},

∆ =
1

8π2
Tr{φ(φ+ φ)) + d(αφ)− 2φF − iαχ},

Ξ =
1

8π2
Tr{φDφ− φDφ+ 2i(F − φ− φ)χ},

and∫
∂c4

CS=

∫
∂c4

Π +

∫
c4

(∆ + ∆)+ (29)

+ (εε)−1[

∫
∂c15

(ε∆ + ε∆) + i

∫
∂c25

(ε∆− ε∆) + 2

∫
∂c6+ε2c15−ε1c25

Ξ].

In the following section type N = 2 Chern-Simons integrals for a boundary
polychain c3 = ∂c4 will be used as action integrals.

4 Connections, metrics and gravity

In this section certain type N = 2 generalized connections A, on an n = 6
dimensional manifold M will be considered. The general formalism follows
that in [14] where type N = 1 forms were used. The connections will be
represented by a 5× 5 matrix-valued generalized one-forms

A =

(
Aa
b −σAa

Ab 0

)
. (30)

and take values in the Lie algebra, g, of G, where G is SO(3 + 1, 1) when
σ = 1; SO(3, 1 + 1) when σ = −1 and ISO(3, 1) when σ = 0. In the first
two cases, which will be of primary interest here, the metric is given by the
5× 5 matrix (

ηab 0
0 σ

)
, (31)

ηab = diag(−1, 1, 1, 1)
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and Ab = ηbaA
a. Latin indices ranging and summing from 1 to 4. The

generalized curvature of A is given by

F = dA+AA =

(
Fab −σFa
Fb 0

)
, (32)

where

Fab = dAa
b +Aa

cA
c
b − σAaAb, (33)

Fa = dAa +Aa
bA

b, Fb = ηbcF
c.

Now let

Aa
b = ωab − (−Ωa

b −
σ

l2
−

Σa
b )m− (+Ωa

b−
σ

l2
+

Σa
b )m, (34)

Aa =
1

l
θa,

where l is a non-zero constant, ωab = −ωba are ordinary real one-forms and
θa are four real ordinary one-forms on M . Furthermore if

Ωa
b = dωab + ωacω

c
b (35)

denotes the curvature of ωab (regarded as an ordinary connection) then
±Ωab

are respectively the so(3, 1) self-dual and anti-self dual parts of Ωa
b . That is

±Ωab =
1

2
(Ωab ∓ i∗Ωab), (36)

where ∗Ωab = 1
2
εabcdΩ

cd and the totally skew symmetric Levi-Civita symbol
satisfies ε1234 = 1. Furthermore Σab = θaθb and ±Σab denote its so(3, 1) self
and anti-self dual parts ±Σab = 1

2
(Σab ∓ i∗Σab).

Then for this connection the curvature F in Eq.(32) is given by

Fab =
σ

l2
(D−Σa

bm+D+Σa
bm), (37)

Fa =
1

l
[Dθa + (−Ωa

b −
σ

l2
−

Σa
b )θ

bm+ (+Ωa
b−

σ

l2
+

Σa
b )θ

bm],

Here the covariant exterior derivative with respect to ωab is denoted D so that

Dθa = dθa + ωab θ
b, (38)

D ±Σa
b = d±Σa

b + ωac
±Σc

b − ±Σa
cω

c
b

= d±Σa
b +± ωac

±Σc
b −± Σa

c
±ωcb,
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where ±ωab = 1
2
(ωab ∓ i∗ωab) respectively denote the so(3, 1) self-dual and

anti-self dual parts of ωab .
The generalized connection A is flat if and only if F = 0 and then

Dθa = 0, (39)

(−Ωa
b −

σ

l2
−Σa

b )θ
b = 0,

(+Ωa
b −

σ

l2
+Σa

b )θ
b = 0.

Suppose now that when the 4 ordinary one-forms {θa} are pulled back to
a four dimensional sub-manifold S ⊆ M they are linearly independent and
so form an orthonormal basis for a Lorentzian metric ds2 = ηabθ

a⊗ θb there.
Then when Eq.(39) is satisfied it follows that this metric satisfies Einstein’s
vacuum field equations on S with cosmological constant Λ = 3σ

l2
.

In passing it is interesting to note the sub-case of the complex connection
asdA given by Eq.(30) with σ = 0 and

asdA
a
b = −ωab − −Ωa

bm; asdAa = θa;
−Ωa

b = d −ωab + −ωac
−ωcb (40)

with curvature asdF given by

asdF
a
b = 0, (41)

asdFa = dθa + −ωabθ
b + −Ωabθ

bm,

If this generalized connection is flat the (complex) metric, ds2 = ηabθ
a⊗θb,

determined analogously to the real four-metric above, is half flat with anti-
self dual curvature −Ωa

b .
For the connection and curvature given by Eqs.(30), (32) and (33) the

generalized Chern-Pontrjagin and Chern-Simons forms are

CP=
1

8π2
[FabF

b
a − 2σFaFa] (42)

CS=
1

8π2
[Aa

bF
b
a −

1

3
Aa
bA

b
cA

c
a − 2σAaFa + σAa

bA
bAa].

Computation, using Eqs.(34) and (37), gives

CS=
1

8π2
{−1

3
ωabω

b
cω

c
a +

σ

l2
ωab θ

bθa −
2σ

l2
θaDθ

a+ (43)

+ [
1

3
d( −ωa.b

−ωbc
−ωca − 3

σ

l2
−ωab

−Σb
.a)−

2σ

l2
−ΩabΣ

ab +
iσ2

4l4
εabcdθ

aθbθcθd]m+

+ [
1

3
d( +ωab

+ωbc
+ωca − 3

σ

l2
+ωab

+Σb
.a)−

2σ

l2
+ΩabΣ

ab +
iσ2

4l4
εabcdθ

aθbθcθd]m}.
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Using Eq.(17) and integrating over a boundary polychain c3 = ∂c4, as in
Eq.(9) with p = 4, gives∫

c3

CS=
σ

4π2l2
{−
∫
∂c4

θaDθa −
∫
c4

ΩabΣ
ab+ (44)

−
∫
∂c15

[iκ2( +ΩabΣ
ab − −ΩabΣ

ab − σ

4l2
εabcdθ

aθbθcθd) + κ1ΩabΣ
ab]

+

∫
∂c25

[iκ1( +ΩabΣ
ab − −ΩabΣ

ab − σ

4l2
εabcdθ

aθbθcθd)− κ2ΩabΣ
ab]}.

where

κ1 =
ε1

εε
; κ2 =

ε2

εε
.

Now consider this expression as a generalized Chern-Simons action in-
tegral and the case where the four ordinary one-forms {θa} are linearly in-
dependent on the four dimensional sub-manifolds (chains), c4, ∂c15and ∂c

2
5.

Since the one forms constitute an orthonormal basis there for a Lorentzian
metric ds2 = ηabθ

a ⊗ θb this action can now be rewritten as∫
c3

CS=
σ

4π2l2
{−
∫
∂c4

θaDθa −
∫
c4

Ωabθ
aθb+ (45)

−
∫
∂c15

[κ2(R− 2Λ)V + κ1ΩabΣ
ab]+

+

∫
∂c25

[κ1(R− 2Λ)V − κ2ΩabΣ
ab]},

where on ∂c15and ∂c
2
5

Ωa
b =

1

2
Ra
bcdθ

cθd, R = ηbdRa
bad, (46)

V = θ1θ2θ3θ4,Λ =
3σ

l2

and the action terms there correspond to the usual first order (Palatini)
Einstein-Hilbert action terms augmented by the term proportional to ΩabΣ

ab,
[21]
On the boundary manifolds ∂c15and ∂c

2
5 the Euler-Lagrange equations are

Einstein’s vacuum field equations, (Gab+Ληab)θ
a⊗θb = 0, with cosmological
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constant Λ = 3σ
l2
. In addition the variation of the first two terms gives

δ(−
∫
∂c4

θaDθa−
∫
c4

Ωabθ
aθb) = −2

∫
∂c4

δθaDθa+

∫
c4

2δθbΩabθ
a−δωabD(θaθb).

(47)
When the geometry of the submanifolds is specified in more detail these
results can be interpreted more completely.
In conclusion it should be noted that the use of an anti-deSitter/deSitter

connection, invariant only under the Lorentz group, in an action principle
with the Einstein field equations as Euler Lagrange equations dates from
the late 1970’s, [22], [23] and[24]. However the approach, initiated in these
papers, which has recently been interpreted in terms of Cartan geometries,
[25], is different from the one taken here.
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