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Abstract:

The algebra and calculus of generalized differential forms are reviewed and
developed. Bases of minus one-forms are studied and used in the investiga-
tion of groups of generalized forms and generalized connections. Different
representations of generalized forms are discussed. Physical and mathemat-
ical applications of generalized forms are presented in a number of examples.
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1 Introduction

In recent years an extension of E. Cartan’s formulation of the algebra and cal-
culus of differential forms to what have been termed generalized differential

forms has been developed. Ordinary forms of different degrees are combined
into more general objects in such a way that these objects, the generalized

forms, obey the basic algebraic and differential rules of the ordinary exterior
algebra and Cartan calculus. However there are some differences from stan-
dard exterior algebra and calculus, for example the analogue of the Poincaré
lemma can be different. Furthermore the definitions allow generalized forms
of negative degree. Forms of this type were first introduced by Sparling
in an attempt to construct twistor spaces for real analytic space-times with
Ricci-flat Lorentzian metrics. The use of negative degree forms enabled him
to overcome the standard obstacle to the construction of such spaces, at least
to the extent that he was able to construct what he termed ‘abstract twistor
spaces’ [1], [2]. Subsequently there have been interesting applications of
generalized forms to various field theories, including BF theory, Yang-Mills
and gravity, [3], [4]. Recently analogous ideas have been explored in the dual
context, and the notion of a generalized vector field has been introduced and
studied, [5]. In a series of papers both the mathematical formalism and a
variety of applications of generalized forms to physical theories have been
developed [6]-[9]. Here the mathematical results contained in this series are
extended and used. Generalized forms, like ordinary differential forms, can
be used as a tool in diverse areas of geometrically related physics. This pa-
per contains new applications in a number of different physically important
contexts.

Generalized differential forms on an n dimensional manifold M may be
described in terms of their type, labelled by a non-negative integer N . Gener-
alized p-forms of type N = 0 are just ordinary p-forms. Generalized p-forms
of type N = 1 may be described in terms of ordered pairs of ordinary p- and
(p+1)-forms. A p-form of type N may be described by an ordered multiplet
of ordinary forms of degrees p to p+N . Forms of higher type may be defined
iteratively. A p-form of type N,where the integer N ≥ 1, may be defined in
terms of an ordered pair of p- and (p+1)-forms of type (N − 1). It follows
from the definitions that generalized forms of degree p, where n ≥ p ≥ −N ,
are permitted. Generalized forms of all different degrees and types obey
the same basic rules of exterior multiplication and differentiation as those
governing the algebra and calculus of ordinary differential forms. However,
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when N > 0 there are some differences from the standard results for ordi-
nary, that is type N = 0, forms. For instance, as mentioned previously,
the analogue of the Poincaré lemma can be different when N is greater than
zero.

In the second section the essential aspects of the basic formalism are pre-
sented and explored more fully than previously. Here generalized forms are
expressed in terms of expansions in bases. Type N forms are assumed to ad-
mit unique expansions in terms of ordinary forms and negative degree forms,
the latter being constructed from N linearly independent minus one-forms.
Such bases are not unique and their properties, and changes of bases, are
discussed. The multiplet description of generalized forms, mentioned above,
corresponds to considering expansions in terms of one fixed basis of negative
degree forms. In previous work it has been assumed (implicitly or explic-
itly) that the exterior derivatives of the basis minus one-forms are constant
ordinary zero-forms. This is a reasonable choice because the exterior deriva-
tive of a p = −1 form must be a zero-form with vanishing derivative. A
more general initial assumption is that the exterior derivative is a nilpotent
differential operator, with the usual exterior derivative properties, and that
the exterior derivatives of type N basis minus one-forms are type N gen-
eralized zero-forms. The consequences of this assumption are explored in
detail when N is one and two. It is found that the exterior derivative de-
termines, and is determined by, a closed differential ideal of ordinary forms.
Different classes of solutions of the differential ideal determine different ex-
terior derivatives. It is then shown how to construct two distinct exterior
derivatives. The first exterior derivative admits bases of minus one-forms
all whose members have vanishing exterior derivative. The second exterior
derivative admits bases of minus one-forms with the property that the exte-
rior derivative of only one basis minus one form is non-zero. Its value can
be chosen to be one. The construction of the first type of basis is local in
contrast to the construction of the second. Such bases are termed canonical
bases. When N = 1 the second type is unique, but canonical bases are not
unique when N > 1. Throughout the paper calculations are carried out us-
ing both exterior derivatives but the second is more interesting as far as the
applications are concerned. Since calculations are simplest when carried out
using canonical bases these are always used in subsequent sections. Section
three is devoted to algebraic considerations. The basic formalism of groups
of matrix-valued generalized forms is presented more generally than previ-
ously. The special orthogonal group of generalized forms and its action as a
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transformation group are provided as concrete examples. Included here are
the generalizations of the Lorentz group and Lorentz transformations that
arise naturally when generalized forms are used. The calculations can be
extended straightforwardly to other groups. The fourth section contains an
outline of the local properties of generalized connections and the construction
of generalized characteristic classes. Examples dealing with type N = 1 con-
nections for metric-connection geometries are given, and it is shown that the
classical Dirac equation corresponds to the vanishing of the covariant exterior
derivative of a spinor valued generalized form. The generalized Euler class,
the generalized first Pontrjagin and the generalized second Chern classes in
four dimensions are introduced and used to construct Lagrangians for Ein-
stein’s vacuum field equations, with and without a cosmological constant,
and for the Yang-Mills field. The use of the generalized Euler class gives a
Lagrangian which necessarily contains both a non-zero cosmological constant
and a Gauss-Bonnet term. The non-trivial role that the latter term can play,
even in four dimensions, has been investigated in recent years, for example
in references [12] and [13]. The calculations using generalized characteristic
classes were motivated by previous investigations of ‘generalized topological
field theory’ and the use of the generalized second Chern class to construct
Lagrangians for various physically interesting field theories, [3], [4]. Finally,
in an appendix, two representations of generalized forms solely in terms of
ordinary forms are exhibited. In the first, generalized forms are represented
by matrices with ordinary forms of different degrees as entries. The exte-
rior product of generalized forms corresponds to the matrix product, and
the exterior derivative corresponds to the derivative of these matrices by a
new nilpotent differential operator. This representation has been presented
before, [8], but the discussion here includes some small differences and minor
corrections. The second representation1 replaces the exterior derivative of
a type N generalized p-form on M by the ordinary exterior derivative of an
ordinary (p + N)−form on (locally) M × RN . An application of this result
is made to the mathematically and physically interesting Beltrami vector
fields. These vector fields have been widely discussed in a number of dif-
ferent contexts such as magnetohydrodynamics and plasma physics; various
examples are included in references [14] and [15]. The second representation
is used to show that Beltrami vector fields, on three dimensional manifolds
with Euclidean signature metrics, determine symplectic structures on four

1private communication from P-A Nagy
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dimensional manifolds.
Details of investigations of Λ(N)(M) = ⊕p=n

p=−NΛp

(N)(M) the module of
generalized forms of type N , will sometimes be confined to the cases where
N is less than or equal to two. There can be differences between the cases
where N = 1 and N > 1, and these are well illustrated by exhibiting the
results for N = 1 and N = 2. Doing this will keep the notation simple and
it is easy to see what are the appropriate generalizations of the calculations
and arguments to forms of higher type. In order to make this paper rea-
sonably self contained a selection of salient results from previous papers are
reviewed. There are a small number of obvious changes of notation from
previous papers, but most of the conventions of references [6]-[9] are retained.
In particular bold-face Roman letters are again used to denote generalized
forms, including, in this paper, basis minus one-forms. Ordinary forms are
again denoted by Greek letters, and, where it is useful, the degree of a form
is indicated above it. The exterior product of any two forms, α and β, is

written αβ. Any ordinary form
q
α, with q either negative or greater than n,

the dimension of the manifold, is zero. Sometimes it is helpful to indicate

the type of a generalized form by a subscript, for example by writing
p
a(N),

where
p
a(N) ∈ Λp

(N)(M) - the module of generalized p-forms of type N . When
the type or degree is obvious from the context this will not be indicated so
explicitly. The forms and manifold may be real or complex.

2 Basic properties and formalism

This section is devoted to a discussion of the exterior algebra and calculus
of generalized differential forms, on a manifold M of dimension n. A gener-
alized p-form of type N = 0 is an ordinary differential p-form. The exterior
algebra of type N = 0 forms is the ordinary exterior algebra. Any gener-
alized p-form of type N ≥ 1 can, by assumption, be uniquely expressed in
terms of a basis constructed from any basis of ordinary forms on M aug-
mented by N linearly independent minus one-forms, {mi} (i = 1, 2, .., N).
These latter quantities are assigned the same algebraic properties as ordi-
nary exterior p-forms, apart from p taking the value minus one in standard
formulae. In particular they are assumed to satisfy the ordinary distributive
and associative laws of exterior algebra; the product rules, mimj = −mjmi

and
p
αmi = (−1)pmi p

α, where
p
α is any ordinary p-form; together with the

5



condition of linear independence, m1m2....mN 6= 0. A generalized p-form

of type N ≥ 1,
p
a(N) ∈ Λp

(N)(M), is thus a geometrical object with a unique
expansion of the form

p
a(N) =

p
α +

p+1
α i1m

i1 +
1

2!

p+2
α i1i2m

i1mi2 + .... +
1

j!

p+j
α i1....ijm

i1 .....mij + ...

(1)

+
1

N !

p+N
α i1....iN mi1 .....miN .

Here
p
α,

p+1
αi1 , ...,

p+j
α i1....ij =

p+j
α [i1....ij ], ...,

p+N
α i1....iN are, respectively, ordinary p-,

(p + 1)-,..., (p + j)-,...(p + N)- ordinary forms; j ranges from 1 to N and
i1,...ij, ..., iN range and sum over 1, 2, .. N . It then follows that generalized
forms satisfy the usual distributive and associative laws of exterior algebra,

together with the product rule
p
a

q

b = (−1)pq
q

b
p
a, and generalized exterior

forms are defined for n ≥ p ≥ −N . With the basis of minus one forms
fixed, generalized p-forms can be identified with ordered tuples of ordinary
forms - the approach that has been used in most previous papers. For each
p = −N,−N + 1, .., n − 1, n, Λp

(N)(M) is a module over the ring of function

on M and Λ(N)(M) = ⊕p=n
p=−NΛp

(N)(M) is a graded algebra with pointwise

exterior product Λp

(N)(M) × Λq

(N)(M) → Λp+q

(N)(M) as defined above.

In calculations it will be useful to use the fact, noted in reference [8], that
any p-form of type N ≥ 1 can be expressed as a of a pair generalized forms
of type N − 1, that is

p
a(N) ≡

p
a(N−1) +

p+1
a (N−1)m

N , (2)

where, when N > 1, each of the type (N − 1) forms can be expressed in
terms of an ordered pair of (N − 2) forms, and so on. By using this type of
expression iteratively, formulae for higher order forms can often be quickly

deduced from results for type N = 1 forms. If
q

bN =
q

b(N−1) +
q+1

b (N−1)m
N

is a q-form of type N ≥ 1, then the exterior product of
p
a(N)and

q

b(N)is the
p+q-form of type N given (recursively) by

p
a(N)

q

b(N) =
p
a(N−1)

q

b(N−1) + [
p
a(N−1)

q+1

b (N−1) + (−1)qp+1
a (N−1)

q

b(N−1)]m
N . (3)

A general change of basis minus one-forms, mi 7→ m̃i, is of the form

m̃i = (Λ−1)i
jm

j +
1

2!

1

Υi
i1i2m

i1mi2 + .... +
1

N !

N−1

Υi
i1i2..iN mi1mi2 ...miN . (4)
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Linear independence of the new basis minus one forms implies that ∆, the
determinant of the N ×N matrix-valued function with entries the zero-forms
Λi

j, must be non-zero, justifying the notation.
Example 2.1:
Consider the case where N = 2. Corresponding conclusions for N = 1

forms can be read off from the results for N = 2 forms. Let

p
a =

p
α +

p+1
α im

i +
p+2
α m1m2, (5)

where the indices i, j range and sum over 1-2.
The most general change of basis of the minus one forms (m1,m2) 7→

(m̃1, m̃2) is of the form

m̃i = (Λ−1)i
jm

j + Υim1m2, (6)

with inverse transformation given by

mi = Λi
jm̃

j − ∆Λi
jΥ

jm̃1m̃2. (7)

The basis transformations, acting on the right here, form a group with the
composition of transformations given by

(Λ2, Υ2) ◦ (Λ1, Υ1) = (Λ1Λ2, Λ
−1
2 Υ1 + ∆−1

1 Υ2).

If the representation of the generalized p-form
p
a in this new basis is given by

p
a =

p

α̃ +
p+1

α̃ im̃
i +

p+2

α̃ m̃1m̃2, (8)

then it follows that

p

α̃ =
p
α,

p+1

α̃ i = Λj
i

p+1
α j, (9)

p+2

α̃ = ∆[
p+2
α − Λj

i

p+1
α jΥ

i].

Consider now the exterior calculus of generalized forms. It is assumed that
exterior derivative operators d : Λp

(N) → Λp+1
(N) agree with the usual exterior

7



derivative when they act on type N = 0 (ordinary) forms and satisfies the
usual exterior derivative rules, that is for type N ≥ 0 forms

d(
p
a +

p

b) = d
p
a + d

p

b, dϕ(X) = X(ϕ),

d(
p
a

q

b) = (d
p
a)

q

b + (−1)p p
ad

q

b, (10)

d2 p
a = 0.

where X is any vector field and ϕ any function on M. Since the exterior
derivative of each basis minus one-form must be a generalized zero-form, it
follows then that there are ordinary zero-, one-, two-,..., N -forms, respectively
µi, νi

i1
, ρi

i1i2
,..., ιii1...iN

., such that

dmi = µi − νi
i1
mi1 +

1

2!
ρi

i1i2
mi1mi2 + ... +

1

N !
ιii1...iN

mi1mi2 ....miN . (11)

The ordinary forms in this expression are restricted by the requirements
above, in particular d2mi = 0. These lead to a differential ideal composed of
the ordinary forms, each solution of which determines an exterior derivative.
The next example illustrates this. Type N = 2 forms are considered and
such a differential ideal is constructed explicitly. Its solutions, and the
corresponding exterior derivatives which they define, are then investigated.

Example 2.2:
Let N = 2 and let a basis of two minus one-forms and an exterior deriva-

tive be given for which

dmi = µi − νi
jm

j + ρim1m2, (12)

where µi, νi
j and ρi are respectively ordinary zero-, one- and two-forms. Ap-

plying the rules of exterior algebra and calculus, as above, in particular,
d2mi = 0, it follows that

Θi ≡ dµi + µjνi
j = 0,

Φi
j ≡ dνi

j + νi
kν

k
j − ρiµj = 0, (13)

Ψi ≡ dρi + νi
jρ

j − ρiν
j
j = 0.

The differential ideal determined by Θi, Φi
j, Ψ

i is closed. Here and in the
following the skew symmetric matrices εij and εij, where ε12 = ε12 = 1, are
used to raise and lower the Latin indices, so that µiεij = µj.
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Conversely any set of ordinary differential forms µi, νi
j, ρ

i satisfying Eqs.(13)
determines an exterior derivative, via Eq.(12), satisfying Eq.(10). Such or-
dinary forms determine the exterior derivative of a generalized p-form to
be

d
p
a = d

p
α + (−1)p+1p+1

α iµ
i + [d

p+1
α i − ν

j
i

p+1
α j + (−1)pµi

p+2
α ]mi

+ [d
p+2
α − νi

i

p+2
α + (−1)p+1ρip+1

α i]m
1m2. (14)

Under a change of basis given by Eq.(6) it follows that

dm̃i = µ̃i − ν̃i
jm̃

j + ρ̃im̃1m̃2, (15)

where

µ̃i = (Λ−1)i
jµ

j, (16)

ν̃i
j = (Λ−1)i

kdΛk
j + (Λ−1)i

kν
k
l Λl

j + µkΛ
k
j Υ

i,

ρ̃i = ∆{(Λ−1)i
jρ

j + dΥi + Υiν
j
j + [(Λ−1)i

kdΛk
j + (Λ−1)i

kν
k
l Λl

j]Υ
j

+ µkΛ
k
j Υ

iΥj},

and

Θ̃i ≡ dµ̃i + µ̃j ν̃i
j = (Λ−1)i

jΘ
j, (17)

Φ̃i
j ≡ dν̃i

j + ν̃i
kν̃

k
j − ρ̃iµ̃j = (Λ−1)i

kΦ
k
l Λ

l
j − ΥiΘkΛ

k
j ,

Ψ̃i ≡ dρ̃i + ν̃i
j ρ̃

j − ρ̃iν̃
j
j = ∆[(Λ−1)i

jΨ
j + Λk

j ΘkΥ
iΥj + (Λ−1)i

kΦ
k
l Λ

l
jΥ

j − ΥiΦj
j].

It follows from Eqs.(12)-(17), and the change of basis equations, that it is
possible to construct bases of minus one-forms m̃i with simple ”canonical”
exterior derivatives. There are two distinct cases where such bases can be
constructed in a straightforward way from the above equations. When the
dimension of the manifold M is less than three the following calculations can
be simplified but the results are the same.

Case (i) Consider exterior derivatives with µi = 0 in a contractible do-
main U ⊆ M . Then a new (canonical) basis can be chosen in U so that
dm̃i = 0.

This follows from the observation that when µi = 0 the solutions of
Eq.(13) can be written in the form

νi
j = (λ−1)i

kdλk
j ,

ρi = (det λ)(λ−1)i
jdζj, (18)
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where det λ is the determinant of the invertible matrix with entries λi
j, and

ζ i are one-forms. Then it follows from Eq.(16) that a canonical basis m̃i,
satisfying dm̃i = 0, is given by Eq.(6) with Λi

j = (λ−1)i
j, and Υi = −(det λ)ζ i.

Such a canonical basis is not unique. If m̃i = (m̃1, m̃2) is a basis
satisfying dm̃i = 0, then so is any basis m̂i = (m̂1, m̂2), where

m̂i = (Λ̃−1)i
jm̃

j + Υ̃im̃1m̃2,

dΛ̃i
j = dΥ̃i = 0. (19)

Case (ii) Consider exterior derivatives with µi non-zero in a (not necessarily
contractible) domain U ⊆ M . In this case, by introducing σi

j ≡ ρiµj, the
differential ideal given by Eq.(13) can be re-written as

Θi = dµi + µjνi
j = 0,

Φi
j = dνi

j + νi
kν

k
j − σi

j = 0, (20)

µjΨ
i + Θjρ

i = dσi
j + νi

kσ
k
j − νk

j σi
k

= −[dΦi
j + νi

kΦ
k
j − νk

j Φi
k] = 0.

Consequently when the second equation is satisfied so is the third. In fact
with this notation the second equation has the form of the Cartan equation
relating a connection and its curvature and the third equation has the form
of the corresponding Bianchi identity.

In this case a new (canonical) basis can be chosen so that dm̃i = δi
1 in

U . To see this first assume, without loss of generality, that µ1 is non-zero.
Then it follows directly from Eq. (16) that Λi

j, as in Eq.(6), can be chosen
so that µ̃i = δi

1. With such a choice,and the choice Υi = −∆−1[(Λ−1)i
kdΛk

2 +
(Λ−1)i

kν
k
l Λl

2], it follows from Eqs.(16) and (20), together with the transformed
version of Eq.(20), that ν̃i

j = 0, ρ̃i = 0 and therefore dm̃i = δi
1.

This canonical basis is not unique. If m̃i = (m̃1, m̃2) is a basis satisfying
dm̃i = δi

1, then so are the bases (m̂1, m̂2), where

m̂1 = m̃1 + d(πm̃1m̃2), (21)

m̂2 = d(τm̃1m̃2),

where π and τ are functions and τ is non-zero. Such mappings of canonical

bases into canonical bases form a group, and if
p
a =

p

α̃+
p+1

α̃ im̃
i +

p+2

α̃ m̃1m̃2 =
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p

α̂ +
p+1

α̂ im̂
i +

p+2

α̂ m̂1m̂2, then

p

α̃ =
p

α̂,
p+1

α̃ 1 =
p+1

α̂ 1,

p+1

α̃ 2 = τ
p+1

α̂ 2 + π
p+1

α̂ 1 (22)
p+2

α̃ = τ
p+2

α̂ +
p+1

α̂ 1dπ +
p+1

α̂ 2dτ.

In the canonical bases the two exterior derivatives of a type N = 2 gen-
eralized p-form are given by

d
p
a = d

p
α + (−1)p+1ε

p+1
α 1 + d

p+1
α 1m

1

+ [d
p+1
α 2 + (−1)pε

p+2
α ]m2 + d

p+2
α m1m2, (23)

where ε = 0 in case (i) and ε = 1 in case (ii). Then
p
a is closed if and only if

d
p
α + (−1)p+1ε

p+1
α 1 = 0,

d
p+1
α 1 = 0, (24)

d
p+1
α 2 + (−1)pε

p+2
α = 0,

d
p+2
α = 0.

Hence in case (i), where ε = 0,
p
a is closed if and only if all the ordinary

forms defining it are closed. On the other hand in case (ii), where ε = 1,
p
a

is closed if and only if it is exact. In this case

p
a =

p
α + (−1)pd

p
αm1 +

p+1
α 2m

2 + (−1)p+1d
p+1
α2 m

1m2 (25)

= d[(−1)p p
αm1 + (−1)p+1p+1

α2 m
1m2],

if and only if d
p
a = 0. It can be seen from Eqs.(25) that, in case (ii), an

ordinary closed form is always exact when viewed as a N ≥ 1 form.
Conclusions in the two corresponding cases for type N = 1 forms can be

read off from these results. In case (i) a canonical minus one-form m which
satisfies dm = 0 can always be constructed in a contractible region. It is
not unique, if m is such a canonical minus one-form so is Λ−1m, where Λ
is any non-zero constant. In case (ii) a canonical minus one-form m which
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satisfies dm = 1 can always be constructed and this one form is unique.
One consequence of this is that, in this case, the definitions of Lie derivative,
duality, co-differential and Laplacian for generalized forms, on manifolds with
metrics, made in previous papers, [7], [8], are uniquely defined relative to the
canonical basis. This contrasts with the situation in case (i) or whenever
N > 1, where those definitions are dependent on the choice of canonical
basis. The method of calculation used in this example can be applied when
N is greater than two but the computations become increasingly lengthy.
A more efficient calculation for general N would be much more satisfactory,
even though it might not give results that are qualitatively different from the
N = 2 case.

Henceforth in this paper two exterior derivatives will be carried along
together and used in calculations for all N > 1. The two derivatives are
those which admit canonical bases of minus one-forms, that is bases for which

dmi = εδi
1, (26)

where ε = 0 in the first case and ε = 1 in the second case. Consequently for
a type N ≥ 1 form given by Eq.(2), the exterior derivatives considered are
given by

d
p
a(N) = d

p
a(N−1) + (1)p+1εδN

1

p+1
a (N−1) + d

p+1
a (N−1)m

N . (27)

In previous papers it was assumed, implicitly or explicitly, that the exterior
derivative was such that a basis existed for which the only non vanishing
ordinary forms in Eq.(11) were the zero-forms µi and that these were non-
zero constants. When this is the case it is always possible to transform to
a new basis of minus one forms satisfying dmi = δi

1, i = 1...N . Therefore,
in the terminology being used in this paper, the second type of exterior
derivative and canonical basis was being used in earlier work.

Finally in this section it should be noted that analytic functions can be
extended naturally, by using their power series expansions, to define functions
of generalized zero-forms.

Example 2.3:

Let f be an analytic function of r real variables and let aµ = αµ + βµm,
µ = 1..r, be r type N = 1 generalized zero-forms. Then, by using the
Maclaurin expansion for f the generalized zero-form f(aµ) can be computed
to be

f(aµ) = f(αµ) +
∂f(αµ)

∂αν
βνm. (28)
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3 Lie Groups and matrix-valued generalized

forms

In this section a fuller discussion of groups of matrix-valued generalized forms
than has been given in previous papers, such as [8], will be presented. It
will always be assumed that matrix representations of groups, on a vector
space, are being used which make the matrix operations in the calculations
well-defined; in particular the identity will be the appropriate unit matrix.
This approach means that obvious homomorphisms and isomorphisms need
not be stated explicitly all the time.

First recall the general case of groups of type N = 1 generalized forms.
For simplicity the starting point is taken to be a matrix Lie group. Let
G be a matrix Lie group and let H an (additive) abelian Lie group. Let

G(0) = {
0
g(0)} be the space of G-valued zero-forms belonging to Λ0

(0)(M). This

is a group under multiplication with identity written 1(0). Let H(0) = {
1
g(0)}

be the additive abelian group of H-valued one-forms ∈ Λ1
(0)(M). Let there be

an ad-action of of G(0) on H(0), that is a homomorphism Φ : G(0) → aut(H(o))

with Φ(
0
g(0)) :

1
g(0) −→

0
g(0)

1
g(0)(

0
g(0))

−1. Then the set of type N = 1 matrix-

valued generalized zero-forms, G(1) = {
0
g(1)}, where

0
g(1) = (1(0) +

1
g(0)m)

0
g(0) (29)

is a group under exterior multiplication. If
0

f (1) = (1(0) +
1

f (0)m)
0

f (0) ∈ G(1)

the product is

0
g(1)

0

f (1) = (1(0) + [
1
g(0) +

0
g(0)

1

f (0)(
0
g(0))

−1]m)
0
g(0)

0

f (0), (30)

and the inverse, with identity 1(1) = 1(0), is given by

(
0
g(1))

−1 = (1(0) − [(
0
g(0))

−1 1
g(0)

0
g(0)]m)(

0
g(0))

−1. (31)

The group G(1) is isomorphic to the semi-direct product of G(0) and H(0).

The Lie algebra g(1) of G(1) is given by {
0

l(1)}, where
0

l(1) =
0

λ+
1

λm and
0

λ and
1

λ respectively take values in the Lie algebras of G and H.
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Lie groups of generalized zero-forms of type N > 1 can be constructed
iteratively (cf. Eq.(2)) from the N = 1 case as follows. Let G(N−1) =

{
0
g(N−1)}, N > 1,be a Lie group of type (N − 1) generalized zero-forms, and

let H(N−1) = {
1
g(N−1)} be an additive abelian Lie group of type (N − 1)

generalized one-forms where there is an ad-action, as above, of G(N−1) on

H(N−1). Then G(N) = {
0
g(N)}, where

0
g(N) = (1(N−1) +

1
g(N−1)m

N)
0
g(N−1) (32)

is a Lie group of type N forms. The product rule and inverses are given
by the same formulae as in Eqs.(30)-(31) with the subscripts (1) and (0)
respectively replaced by (N) and (N − 1). In the applications in this paper
it will always be the case that H(N) is isomorphic to the Lie algebra g of G,
regarded as an additive abelian group.

Example 3.1:

Consider G(2) = {
0
g(2)}, where

0
g(2) = (1(1) +

1
g(1)m

2)
0
g(1),

0
g(1) = (1 +

1
γ1m

1)
0
γ and

1
g(1) =

1
γ2 +

2
γm1. Here

0
γ is an ordinary G-valued zero form

belonging to G(0), and
1
γ1,

1
γ2,

2
γ are, respectively, ordinary H-valued one-

forms and two-forms. Furthermore G(1) = {
0
g(1)} and H(1) = {

1
g(1)} and G(1)

acts on H(1) by
1
g(1) →

0
g(1)

1
g(1)(

0
g(1))

−1. Written out more fully, with the
identity written as 1,

0
g(2) = [1 +

1
γ1m

1 +
1
γ2m

2 + (
2
γ +

1
γ2

1
γ1)m

1m2]
0
γ, (33)

(
0
g(2))

−1 = [1 − (
0
γ)−1 1

γ1

0
γm1 − (

0
γ)−1 1

γ2

0
γm2

− (
0
γ)−1(

2
γ +

1
γ1

1
γ2)

0
γm1m2](

0
γ)−1;

0
g(1)

1
g(1)(

0
g(1))

−1 =
0
γ

1
γ2(

0
γ)−1 + {(

0
γ

2
γ(

0
γ)−1 − [

1
γ1

0
γ

1
γ2(

0
γ)−1 +

0
γ

1
γ2(

0
γ)−1 1

γ1]}m
1.

(34)

Note that, in Eq.(34), {
1
γ1[

0
γ

1
γ2(

0
γ)−1] + [

0
γ

1
γ2(

0
γ)−1]

1
γ1} must be an H-valued

two-form as is the case in the applications, where H is always a Lie-algebra
regarded also as an additive abelian group.

Under a change of canonical basis, m1 = m̃1+πm̃2+dπm̃1m̃2, and m2 =

τm̃2 + dτm̃1m̃2 as in Eq.(21), it follows that (
0
γ,

1
γ1,

1
γ2,

2
γ) → (

0

γ̃,
1

γ̃1,
1

γ̃2,
2

γ̃)
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where

0

γ̃ =
0
γ,

1

γ̃1 =
1
γ1,

1

γ̃2 = π
1
γ1 + τ

1
γ2,

2

γ̃ = τ
2
γ − π

1
γ1

1
γ1 +

1
γ1dπ +

1
γ2dτ. (35)

Example 3.2:
Let V be a real vector space of dimension s = p + q equipped with a

metric η of signature (p, q). First consider matrix-valued generalized forms

which preserve the metric, that is forms
0
g(N) = (1(N−1) +

1
g(N−1)m

N)
0
g(N−1),

with matrix entries belonging to Λ0
(N)(V ), which satisfy

0
g

T

(N)η
0
g(N) = η, (36)

where, for each N the metric is considered to be a matrix-valued type N zero-
form ( by a small abuse of notation written η) and the superscript T denotes

the matrix transpose,
0
g

T

(N) =
0
g

T

(N−1)+
0
g

T

(N−1)

1
g

T

(N−1)m
N . This condition holds

if and only if

0
g

T

(N−1)η
0
g(N−1) = η,

1
g

T

(N−1)η + η
1
g(N−1)=0. (37)

If
0

X(N)and
0

Y(N)are vector-valued generalized zero-forms, the bilinear form
0

X

T

(N)η
0

Y(N)is preserved under the transformations
0

X(N) 7→
0
g(N)

0

X(N),
0

Y(N) 7→

0
g(N)

0

Y(N).
Example 3.3:

In the case of type N = 1 generalized forms,
0
g(1) = (1(0) +

1
g(0)m

1)
0
g(0),

written here as
0
g(1) = (1 +

1
γ)m

0
γ, the metric preserving conditions given by

Eqs.(36-37) hold if and only if

0
γ

T

η
0
γ=η,

1
γ

T

η +
1
γη=0, (38)

that is if and only if the matrix
0
γ takes values in SO(p, q) and the matrix-

valued one-forms
1
γ take values in so(p, q), the Lie algebra of SO(p, q).
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If
0

X(1) =
0

ξ +
1

ξm and
0

Y(1) =
0
ς +

1
ςm, where

0

ξ,
1

ξ,
0
ς and

1
ς are vector-valued

ordinary forms, then

0

X

T

(1)η(1)

0

Y(1) =
0

ξ
T

η
0
ς + (

0

ξ
T

η
1
ς +

1

ξ
T

η
0
ς)m. (39)

Under the transformations
0

X(1) 7→
0
g(1)

0

X(1),
0

Y(1) 7→
0
g(1)

0

Y(1)

0

ξ 7→
0
γ

0

ξ and
1

ξ 7→
0
γ

1

ξ +
1
γ

0
γ

0

ξ, (40)

and similarly for
0
ς and

1
ς. Since

0

X

T

(1)η(1)

0

Y(1)is preserved under these trans-

formations so are both
0

ξ
T

η
0
ς and (

0

ξ
T

η
1
ς +

1

ξ
T

η
0
ς). The first transformation in

Eq.(40) is the usual SO(p, q) transformation, but the second is a generaliza-
tion of the usual transformation induced on vector valued one-forms. Hence,
when p = 1 and q = 3, the groups and transformations are generalizations of
the usual Minkowski space-time Lorentz group and Lorentz transformations.

These results can be easily extended to forms of higher type. When

Eq.(32) is used, repeatedly, to express type N > 2 forms,
0
g(N), in terms

of their expansions in ordinary forms and the basis minus one-forms it is a
straightforward matter to see that the degree zero ordinary form is SO(p, q)-
valued and the higher degree ordinary forms are so(p, q)-valued. For example

when N = 2 and
0
g(2)is expanded in the form given by Eq.(33),

0
γ is SO(p, q)-

valued and
1
γ1,

1
γ2,

2
γ are each so(p, q)-valued.

It is clear that these results extend straightforwardly to the case where
G is a symplectic or unitary group. Again in these cases H is the corre-
sponding Lie algebra. The formalism also extends in the obvious way to
other groups such ISO(p, q) and to affine, conformal, projective and other
transformations.

4 Local generalized connections

The local theory of type N generalized connections, with values in the Lie
algebra g of a matrix Lie group G, will be discussed and some examples will be
given. Here H = g and the connection one-forms, A(N), are g-valued type
N generalized one-forms. It will be assumed that matrix representations
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are being used so that the generalized connections (and their constituent
ordinary forms) are square matrix-valued. The curvature 2-form is defined
by the standard formula

F(N)= dA(N) + A(N)A(N), (41)

where, as usual, the last term includes both the matrix and the exterior prod-
uct. It is convenient to introduce a differential operator D(N) - the covariant
exterior derivative defined by A(N). The covariant exterior derivative of a
type N generalized square matrix-valued p-form P(N) is defined to be

D(N)P(N) = dP(N) + A(N)P(N) + (−1)p+1P(N)A(N). (42)

As in previous sections formulae for type N ≥ 1 forms can often be conve-
niently constructed, iteratively, from formulae for forms of lower type. Writ-
ing

A(N) =
1

A(N−1) +
2

A(N−1)m
N , (43)

it follows that

F(N) =
2

F(N−1) +
2

εA(N−1)δ
N
1 + D(N−1)

2

A(N−1)m
N . (44)

The generalized connection is flat when F(N) = 0. The generalized con-

nection A(N) = (
0
g(N))

−1d
0
g(N), where

0
g(N)is a G(N) - valued function, is flat.

Under a “generalized gauge transformation”

A(N) → (
0
g(N))

−1d
0
g(N) + (

0
g(N))

−1A(N)
0
g(N), (45)

the curvature transforms in the usual way

F(N) → (
0
g(N))

−1F(N)
0
g(N), (46)

and the condition of flatness is preserved. These generalized gauge trans-
formations also preserve the generalized versions of various characteristic
classes, for instance the generalized second Chern class which is defined by

2C(N) =
1

8π2
[Tr(F(N)F(N)) − Tr(F(N))Tr(F(N))], (47)

and is equal to the exterior derivative of the generalized Chern-Simons three-
form CSC(N) where

CSC(N) =
1

8π2
[Tr(A(N)F(N) −

1

3
A(N)A(N)A(N) − A(N)dA(N))]. (48)
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The definitions of the second Chern class and Chern-Simons three-form pre-
sented here are formal analogues of the usual definition in terms of ordinary
forms. They were introduced and used in references [3], [4] using type N = 1
connections and curvatures. Other generalized characteristic classes, such as
the Pontrjagin classes, can also be constructed by replacing ordinary forms
with generalized forms in the usual definitions. In an example below the
generalized Euler class in four dimensions will introduced and used.

Next examples which exhibit various features of generalized connections
will be exhibited. It suffices to discuss type N = 1 connections here. Many
further examples, including type N = 2 connections, are given in references
[6],[9] and also in [3], [4].

Example 4.1:

Let a type N = 1 connection, A =
1
α+

2
αm, be flat so that d

1
α+

1
α

1
α+ε

2
α = 0

and D
2
α = 0, where D is the covariant exterior derivative with respect to

1
α.

Then in case (i) where ε = 0, it is a straightforward matter to show that
on a contractible neighbourhood U there exist ordinary G-valued zero- and g-
valued one-forms µ and ν such that A = µ−1dµ+µ−1(dν)µm. Furthermore,

A = (
0

h)−1d
0

h where
0

h = (1 + νm)µ. More generally, A = (
0
g

0

h)−1d(
0
g

0

h) for

any closed zero-form
0
g in G(1). When ε = 0 such a closed form can always

be written as
0
g = [1 + βm]γ for some constant G-valued zero-form γ and

closed g-valued one-form β.
In case (ii) where ε = 1, the flat connection is always of the form A =

1
α − (d

1
α +

1
α

1
α)m, and A = (

0

h)−1d
0

h where
0

h = 1 −
1
αm. More generally

A = (
0
g

0

h)−1d(
0
g

0

h) for any closed zero-form
0
g in G(1) . When ε = 1 such a

closed form can always be written as
0
g = [1+(dγ)γ−1m]γ for some G-valued

zero-form γ.

In the next example the case where G = ISO(p, q) and affine generalized
connections are considered. In particular it is shown how to recover the
Cartan structure equations for a metric from a flat generalized connection.
This is an extension and re-formulation of an earlier calculation in reference
[6].

Example 4.2:

On an open subset of an n dimensional manifold M an element of the
group ISO(p, q)(1) can be represented by (n+1)×(n+1) matrix-valued type
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N = 1 generalized zero-form,

0
g(1) =

(
ga

b ga

0 1

)
. (49)

Here the Latin indices range and sum over 1...n and the N = 1 generalized
zero-forms ga

b are the (a, b) entries in a n × n representation of SO(p, q)(1).
The type N = 1 generalized affine connections are represented by (n+1, n+1)
matrix valued generalized one-forms

A(1)=

(
Aa

b Aa

0 0

)
, (50)

with values in the Lie algebra of ISO(p, q)(1). When Aa
b = ωa

b − Ωa
bm and

Aa = θa − Θam the curvature of A(1) is given by

F(1) =

(
Fa

b Fa

0 0

)
, (51)

where

Fa
b = dωa

b + ωa
c ω

c
b − εΩa

b − DΩa
bm,

Fa = Dθa − εΘa + (Ωa
bθ

b − DΘa)m,

and D is the covariant exterior derivative with respect to ωa
b .

When ε = 0 the generalized connection is flat if and only if

dωa
b + ωa

c ω
c
b = 0, Dθa = 0, (52)

DΩa
b = 0, Ωa

bθ
b − DΘa = 0.

If the n ordinary one-forms θa are linearly independent so that they can form
an orthonormal basis for a metric of signature (p, q), ds2 = ηabθ

a ⊗ θb, then
this metric, with metric connection ωa

b , is flat. Locally θa = (γ−1)a
bdxb and

ωa
b = (γ−1)a

cdγc
b , where γc

aγ
d
b ηcd = ηab. It then follows from the other flatness

conditions that there are so(p, q)-valued one forms µa
b and one-forms νa such

that Ωa
b = (γ−1)a

c(dµc
d)γ

d
b and Θa = (γa

c )−1[µc
bdxb + dνc]. Hence, when ε = 0,

the flat connection one-form A(1) is locally given in this gauge by

A(1)=

(
(γ−1)a

cdγc
b (γ−1)a

bdxb

0 0

)
−

(
(γ−1)a

c(dµc
d)γ

d
b (γa

c )−1[µc
bdxb + dνc]

0 0

)
m.

(53)
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When ε = 1 the generalized connection is flat if and only if

dωa
b + ωa

c ω
c
b − Ωa

b = 0, (54)

Dθa − Θa = 0.

Then A(1) = (
0
g

0

h)−1d(
0
g

0

h) where, directly from Example 4.1,
0
g is any closed

zero-form in IS(p, q)(1), and

0

h =

(
δa
b − ωa

b m −θam

0 1

)
. (55)

When the one-forms θa are linearly independent, so that they can form an
orthonormal basis for the metric ηabθ

a⊗θb, Eqs.(54) are the Cartan structure
equations for the SO(p, q) metric. The metric connection ωa

b has torsion Θa

and curvature Ωa
b . The equations, Ωa

bθ
b − DΘa = 0 and DΩa

b = 0, which
must also hold when the connection is flat are just the Bianchi identities. It
should be noted that the Cartan structure equations, and Einstein’s gravita-
tional field equations can also be expressed as the flatness of type SO(p, q)(2)

connections, [9].
In four dimensions the Cartan structure equations for a metric connection

can also be obtained from another flat connection by using spinor represen-
tations. In the next example a brief outline of the Lorentzian case will be
given, using the two component spinor conventions and notation of references
[10] and [11].

Example 4.3:

Consider a four dimensional manifold M and a generalized connection
represented by a complex 4 × 4 matrix-valued generalized one-form

A =

(
AA

B AA
B′

0 AA′

B′

)
=

(
ωA

B − ΩA
Bm θA

B′ − ΘA
B′m

0 ωA′

B′ − ΩA′

B′m

)
, (56)

where θA
B′ , ωA

B, ωA′

B′and ΘA
B′ , ΩA

B, ΩA′

B′ are respectively one-forms and two-
forms. Let ωA

B, ΩA
B take values in the Lie algebra sl(2, C) and let ωA′

B′ ,

ΩA′

B′ be their complex conjugates. The operator D, whenever it is used, is
the relevant covariant exterior derivative with respect to ωA

B and ωA′

B′ . The
curvature F=dA + AA is equal to

(
zA

B − εΩA
B − DΩA

Bm, DθA
B′ − εΘA

B′ + (ΩA
CθC

B′ − θA
C′ΩC′

B′ − DΘA
B′)m

0 zA′

B′ − εΩA′

B′ − DΩA′

B′m

)
,

(57)
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where zA
B = dωA

B + ωA
CωC

B and zA′

B′ = dωA′

B′ + ωA′

C′ωC′

B′ . Henceforth in this
example let ε = 1. Consider the case where the one-forms θAA′

form a null
co-frame for a Lorentzian metric, εABεA′B′θAA′

⊗ θBB′

. Then the generalized
curvature F is zero if and only if the Cartan structure equations for the
metric are satisfied, with metric connection ωa

b ↔ (ωA
BδA′

B′ + ωA′

B′δA
B). The

torsion of this connection is Θa ↔ ΘAA′

and its curvature two-form Ωa
b ↔

(ΩA
BδA′

B′+ΩA′

B′δA
B). Now let V =

(
VA

VA′

)
be a generalized 4×1 matrix-valued

p-form. Its covariant exterior derivative, with respect to A, is

DV= (dV + AV) (58)

=

(
dVA + AA

BVB + AA
B′VB′

dVA′

+ AA′

B′VB′

)
≡

(
DVA

DVA′

)
,

When VA = αA +βAm and VA′

= ξA′

+ ζA′

m, where αA, ξA′ and βA, ζA′ are
respectively spinor-valued ordinary p-forms and (p + 1)-forms

DVA = DαA + θA
B′ξ

B′

+ (−1)p+1βA+ (59)

+ [DβA + θA
B′ζ

B′

+ (−1)p+1ΘA
B′ξ

B′

+ (−1)p+1ΩA
BαB]m,

DVA′ = DξA′

+ (−1)p+1ζA′

+ [DζA′

+ (−1)p+1ΩA′

B′ξ
B′

]m.

Now consider the case where the generalized curvature two-form F is zero
and where V is the generalized three-form obtained by choosing

αA = ρA′ηAA′

, βA = (2 − µ)σAυ, (60)

ξA′

= σAηAA′

, ζA′

= −µρA′

υ.

Here µ is a real constant, υ is the non-zero volume four-form and ηAA′

=
i
3
θAB′

θBA′

θBB′ is the basis of three-forms dual to θAA′

. Then

DV =

(
DAA′

ρA′ − µσA + ρA′ [Θ.A′AB
B + ΘA.A′B′

B′ ]
DAA′

σA − µρA′

+ σA[Θ.A′AB
B + ΘA.A′B′

B′ ]

)
υ, (61)

where DAA′ denotes the covariant derivative determined by the metric con-
nection and the torsion has been expanded in terms of its components as

ΘAA′

=
1

2
(ΘAA′BCθBC′θC′

C + ΘAA′B′C′

θB′CθC
C′), (62)
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The complex conjugate components ΘAA′BC and ΘAA′B′C′

are symmetric in
their last two indices. The vanishing of the covariant exterior derivative
gives a generalization of the Dirac equation. When the torsion is zero the
covariant derivative is determined by the Levi Civita (spin) connection and
the equation DV = 0 holds if and only if the four spinor zero-form ψ =
(σA, ρA′) satisfies the classical Dirac equation

DAA′

ρA′ = µσA; DAA′

σA = µρA′

. (63)

Similar results hold for split and Euclidean signature metrics. It is
straightforward to see how to write down the associated gauge groups by
appropriately modifying the discussion of ISO(p, q)(1) in the previous exam-
ple.

The next example illustrates the use of type N = 1 forms in four di-
mensions, and the generalized Euler class, to construct a Lagrangian which
has the Einstein vacuum field equations with non-zero cosmological constant
as Euler-Lagrange equations. The idea of using generalized characteris-
tic classes to construct Lagrangians was introduced in references [3] and [4]
where Lagrangians for various field theories, including Einstein’s vacuum
field equations with a non-zero cosmological constant and Yang-Mills fields,
were constructed by using the generalized second Chern class. The type of
notation employed in Example 4.2 will be used again.

Example 4.4:

The generalized Euler class in four dimensions is defined, by analogy with
the standard definition, to be

E(N) =
1

32π2
εabcdF

ab
(N)F

cd
(N), (64)

where the Latin indices sum and range over 1 to 4, εabcd is the totally anti-
symmetric Levi-Civita symbol, and Fab

(N) is the generalized curvature of a

type N generalized connection with G = SO(r, s) and r + s = 4. This is
also invariant under generalized gauge transformations. In four dimensions
only the first two terms in the expansion of the expression for the connection
contribute to E(N) and 2C(N). In this sense, E(N) = E(1) and 2C(N) =2

C(1) for all N ≥ 1. Therefore here only type N = 1 connections Aa
b , with

generalized curvature two-form Fa
b , will be used. In the remainder of this

example, and the next, the choice dm = 1 will be made. Choosing

Aa
b = ωa

b + kθaθbm, (65)
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where k is a non-zero constant, it follows that

Fa
b = Ωa

b + kθaθb + kD(θaθb)m. (66)

When Fa
b = 0 the metric ηabθ

a ⊗ θb has a torsion free metric connection ωa
b

with constant Riemannian curvature. The generalized Euler class is given
by

E(1) = E(0) + L, (67)

L =
k

16π2
(εabcdΩ

abθcθd +
k

2
εabcdθ

aθbθcθd).

Here E(0) is the ordinary Euler class, E(0) = 1
32π2 (εabcdΩ

abΩcd). Consequently
E(1) is in fact an ordinary four form, the sum of the topological term E(0)

and the term L. The latter is essentially the usual first order Lagrangian
four-form for Einstein’s vacuum equations with non-zero cosmological con-
stant. This result suggests that E(1) is a natural Lagrangian four-form for
four dimensional gravity when the cosmological constant is assumed to be
non-zero. Examples of recent investigations employing Lagrangians in four
dimensions which include a cosmological constant and a Gauss-Bonnet term
can be found in references [12] and [13].

Example 4.5:

In four dimensions, the generalized second Chern class, 2C(1) ≡ C, and
generalized first Pontrjagin class, 1P(1) ≡ P, corresponding to a type N = 1
(zero trace) generalized connection A = α + βm, with curvature F = Ω +
β + Dβm, have the form

κ

8π2
Tr(Ω + β)2 =

κ

8π2
Tr(ΩΩ + 2Ωβ + ββ), (68)

where Ω = dα + αα, and κ = 1 for C and κ = −1 for P. When α and β

are respectively given by the so(r, s)-valued forms ωa
b and (aθaθb + b

2
εa
bcdθ

cθd),
where a and b are constants and r + s = 4, the generalized first Pontrjagin
class takes the form

P= −
1

8π2
(Ωa

bΩ
b
a + 2aΩa

bθ
bθa + bΩa

bε
b
acdθ

cθd − abεabcdθ
aθbθcθd). (69)

The first term in this ordinary four-form is the ordinary first Pontrjagin
class, 1P(o), corresponding to the connection one-form α. Altogether P,
with appropriate choices of a and non-zero b, is also a first order Lagrangian
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four-form for Einstein’s vacuum equations. It includes the topological term

1P(0) and the choice a = 0 corresponds to the zero cosmological constant
case.

Finally it should noted that when a fixed metric with signature (r, s) is
assumed given on a four dimensional manifold M , and the two-form β is
chosen to be β = aΩ + b ∗ Ω, where ∗ denotes the Hodge dual, then the
generalized second Chern class is the ordinary four-form

C =
1

8π2
{[(1 + a)2 + (−1)rb2]Tr(ΩΩ) + 2b[1 + a]Tr(Ω ∗ Ω)}. (70)

This is essentially just the sum of the ordinary second Chern class and the
usual Lagrangian four-form for the source-free Yang-Mills equations on M .
This Lagrangian is a small generalization of the Yang-Mills Lagrangian com-
puted in [4]. As a particular example consider the case where the metric has
Euclidean signature, b = (1 + a) and the gauge group is SU(2. Then the
Lagrangian corresponding to C is non-negative and attains its minimum of
zero when the generalized curvature

F = (1 + a)[(Ω + ∗Ω) + D(∗Ω)m] (71)

is zero; that is when the ordinary curvature two-form Ω is anti-self dual.

5 Summary

The theory and formalism of generalized forms has been developed more fully
than previously. In particular bases of minus one-form have been explored
and used. The introduction and use of canonical bases has enabled a number
of results to be expressed with increased generality. Previous studies of differ-
ent representations of generalized forms, matrix groups of generalized forms
and generalized connections have been extended, and a number of examples
have been presented. In particular the Cartan structure equations and La-
grangians for relativistic field theories have been re-formulated within the
context of the theory of generalized connections. Topics for future investiga-
tion include the global formulation of generalize connections and the develop-
ment of further applications to physically interesting systems in different di-
mensions.
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6 Appendix: Representations of generalized

forms

For calculational purposes the rules given in the previous sections suffice.
However conceptually it is useful to be able to represent generalized forms
and their exterior products and derivatives purely in terms of ordinary forms.
In this appendix two such representations will be exhibited. First a repre-
sentation of generalized forms in terms of matrix-valued forms - matrices
with entries taking values in ordinary forms - will be recalled. The exte-
rior product of generalized forms is represented by the matrix product of
the matrix-valued forms and the exterior derivative is represented by the
action of nilpotent differential operators, d(N), on the type N matrix-valued
forms. Second an interesting representation of the exterior derivative of a
generalized p-form on M will be exhibited in terms of the ordinary exterior
derivative of an ordinary (p + N)-form, on an n + N dimensional manifold
M × IN , where locally I ⊆ R can be taken to be an interval on the real
line. This latter representation of the exterior derivative was first noted by
Paul-Andi Nagy in the case of N = 1 forms. Here this representation will
be explicitly constructed for N = 1 and N = 2 forms and it will be shown
how to generalize these constructions to forms of higher type.

In the first representation of a generalized form
p
a(N), introduced in [8],

generalized forms of type N > 1 are identified with 2N × 2N matrix-valued

forms [
p
a(N)] ∈

p

M (N). The expressions for these matrices are found by
exploiting Eq.(2) and the definition

[
p
a(N)] =

(
[
p
a(N−1)] [

p+1
a (N−1)]

0 (−1)p[
p
a(N−1)]

)
. (72)

The matrix representing the exterior product
p
a(N)

q

b(N), denoted by [
p
a(N)

q

b(N)],

is equal to the matrix product [
p
a(N)][

q

b(N)]. The matrix representation of the

exterior derivative of
p
a(N), [d

p
a(N)], is equal to d(N)[

p
a(N)], where the nilpotent
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operator d(N) :
p

M (N) →
p+1

M (N), is given by d(0) = d, and for N > 0

d(N)[
p
a(N)] = S(N)d[

p
a(N)] + {K(N), [

p
a(N)]}p+1. (73)

Here the bracket of 2N × 2N matrices A and B is defined by {A,B}r =
AB + (−1)rBA , and the 2N × 2N constant matrices S(N) and K(N) satisfy
(S(N) )2 = 12N

×2N , (K(N))
2 = 0 and K(N)S(N) + S(N) K(N) = 0. The

nilpotent operator d(N) must also satisfy the usual graded Leibniz rule when
acting on products. The following example contains these matrices when
N = 1 and N = 2 and corrects small errors in the discussion in reference [8].

Example A.1:

The matrix representation, [d
p
a(2)], of the exterior derivative of

p
a(2)is equal

to d(2)[
p
a(2)] where, since dmi = εδi

1,

d(2)[
p
a(2)] = S(2)d[

p
a(2)] + {K(2), [

p
a(2)]}p+1;

S(2) =

(
S(1) 0
0 −S(1)

)
, K(2) =

(
K(1) 0
0 −K(1)

)
, (74)

S(1) =

(
1 0
0 −1

)
, K(1) =

(
0 0
ε 0

)
.

The operator d(2) is nilpotent and satisfies the graded Leibniz rule

d(2)[
p
a(2)

q

b(2)] = d(2)[
p
a(2)][

q

b(2)] + (−1)p[
p
a(2)]d(2)[

q

b(2)]. (75)

It is a straightforward matter to compute the constant matrices K(N) and
S(N) , and hence d(N), when N > 2. From Eq.(72) it follows that the 4 × 4
matrix representations of the type N = 2 canonical basis minus one-forms
{mi} are

[m1] =

(
[m] 02×2

02×2 −[m]

)
, where [m] =

(
0 1
0 0

)
; (76)

[m2] =

(
02×2 12×2

02×2 02×2

)
,

and d(2)[m
1] = ε14×4, d(2)[m

2] = 0.
Example A.2

Let A be a type N = 1 (s × s matrix-valued) connection one-form with
curvature two-form F =dA+AA. Then in the representation of generalized
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forms being considered here the standard formulae relating Lie algebra valued
ordinary forms are replaced by analogous formulae which include ordinary
forms of higher degree. For example here the connection matrix [A] is a
2s × 2s matrix with entries ordinary one- and two forms (as in Eq.(72) but
with s × s matrix valued ordinary forms inserted in the formula). The
corresponding curvature matrix, [F], is

[F] =d(1)[A]+[A][A], (77)

where
d(1)[A] =Sd[A]+K[A]+[A]K, (78)

and the 2s × 2s constant matrices S and K are given by

S =

(
1s×s 0
0 −1s×s

)
, K =

(
0 0

ε1s×s 0

)
. (79)

This expression for the curvature generalizes the standard formula to include
ordinary forms of different degrees and can clearly be extended to the cases
where N > 1.

In this first representation the exterior product of generalized forms is
represented by the ordinary exterior product, albeit applied to matrix-valued
forms, while the ordinary exterior derivative d is replaced by the differential
operator d(N). In the second representation of type N ≥ 1 generalized forms
to be discussed in this appendix, the ordinary exterior derivative is retained,
albeit applied to ordinary (p + N)-forms defined on manifolds of dimensions
n + N . While the exterior product of generalized p-forms is not reproduced
by the ordinary exterior products of these (p + N)-forms it is still useful
to have this representation of the exterior derivative in, for example, the
exploration of integrals and Stokes theorem for generalized forms.

Consider first generalized forms of type N = 1. Let
p
a(1) =

p
α+

p+1
α m be a

type N = 1 generalized p-form on M . Then on M × I where I is an interval
on the line with coordinate y, define the ordinary (p + 1)-form

p+1
α (1) ≡

p
αdy + yεp+1

α . (80)

Comparing the exterior derivatives of
p
a(1)and α(1),

d
p
a(1) = [d

p
α + (−1)p+1ε

p+1
α ] + d

p+1
α m, (81)

d
p+1
α (1) = [d

p
α + (−1)p+1ε

p+1
α ]dy + yεd

p+1
α ,
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it is clear that the association of
p
a(1) with

p+1
α (1) is identical to the association

of d
p
a(1)with d

p+1
α (1). This is the observation of Paul-Andi Nagy. From this

correspondence it follows that
p
a(1)is closed if and only if

p+1
α (1)is closed. When

ε = 1,
p+1
α (1) is closed if and only if it is exact; if d

p
a(1) = 0 then d

p+1
α (1) = 0

and it follows that
p
a(1) = (−1)pd(

p
αm) and

p+1
α (1) = (−1)pd(y

p
α).

Example A.3

A Beltrami vector field on Euclidean three-space, E3, is a vector field
−→α which is parallel or anti-parallel to its curl, that is curl−→α = σ−→α , where
σ is a non-zero function. This condition can be re-expressed in terms of
the one-form α, corresponding to −→α via the usual metric isomorphism, as
the condition that dα = σ ∗ α, where ∗ denotes the Hodge dual. This lat-
ter equality can be used to define Beltrami vector fields on any 3-manifold,
with metric, M3. Beltrami vector fields on E3 and other three dimensional
manifolds arise in many physically interesting contexts such as fluid dynam-
ics, magnetohydrodynamics and plasma physics, see for example, [14], [15].
On M3 consider the type N = 1 generalized one-form a =α − σ ∗ αm with
dm = 1. This generalized form is closed (and therefore exact) if and only
if α defines a Beltrami vector field −→α . Hence −→α is a Beltrami vector field
on M3 if and only if on M3 × I the two-form

2
α(1) ≡ αdy − yσ ∗ α is closed.

When the metric has Euclidean signature, and I does not contain y = 0, the

non-zero form
2
α(1)is of maximal rank. In this case any non-zero Beltrami

vector field on M3 defines a symplectic structure on M3 × I.
A straightforward extension of the definition is suggested by this for-

mulation of the Beltrami condition in terms of generalized forms. For an
n dimensional manifold M with metric, the dual, ∗α, of a p-form α is a
(n − p)-form. Consider therefore the generalized p-form on M , given by
a = α− σ ∗αm, where σ is a non-zero (2p + 1− n)−form . The generalized
p-form a is closed if and only if α satisfies the “generalized Beltrami condi-
tion”, dα + (−1)pσ ∗ α = 0. When n = 3 the two possible choices are p = 1
and p = 2. In the second case, the latter condition, expressed in terms of
dual pseudo-vector fields −→α and −→σ takes the form div(−→α ) + 〈−→α ,−→σ 〉 = 0,
where 〈−→α ,−→σ 〉 denotes the metric inner product. This is a restriction on −→α
only when −→σ is assumed given.

Next consider forms of type N = 2. Let
p
a(2) =

p
a(1)+

p+1
a (1)m

2 where
p
a(1) =

p
α +

p+1
α 1m

1 and
p+1
a (1) =

p+1
α 2 +

p+2
α m1 so that

p
a(2) =

p
α +

p+1
α im

i +
p+2
α m1m2.
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Then on M×I2, with coordinates y1, y2 on I2, define the ordinary (p+2)-form

p+2
α (2) ≡

p+1
α (1)dy2 +

p+2
α (1) ≡ (

p
αdy1 + (y1)εp+1

α 1)dy2 + (
p+1
α 2dy1 + (y1)εp+2

α )

=
p
αdy1dy2 + (y1)εp+1

α 1dy2 +
p+1
α 2dy1 + (y1)εp+2

α . (82)

Here Eq.(2) and the above constructions for N = 1 forms have been used to

construct
p+2
α (2). Comparing the exterior derivatives of

p
a, and α(2)

d
p
a = [d

p
α + (−1)p+1ε

p+1
α 1] + d

p+1
α 1m

1+

+ [d
p
α2 + (−1)pε

p+2
α ]m2 + d

p+2
α m1m2, (83)

d
p+2
α (2) = [d

p
α + (−1)p+1ε

p+1
α 1]dy1dy2 + (y1)εd

p+1
α 1dy2+

+ [d
p+1
α 2 + (−1)pε

p+2
α ]dy1 + (y1)εd

p+2
α ,

it is clear that the association of
p
a with

p+2
α (2) is identical to the association of

d
p
a with d

p+2
α (2). In addition,

p
a is closed if and only if

p+2
α (2) is closed. When

ε = 1 both
p
a and

p+2
α (2) are closed if and only if they are exact; when they

are closed they are equal to the exact forms
p
a = (−1)pd[

p
αm1 −

p+1
α 2m

1m2]

and α(2) = (−1)pd[y1 p
αdy2 − y1p+1

α 2].
For generalized forms of type N > 2 the analogous correspondence is be-

tween generalized forms
p
a(N) =

p
a(N−1) +

p+1
a (N−1)m

N on M and ordinary (p+

N)−forms on M × IN . With coordinates y1, ...., yN on IN ,
p
a(N)corresponds

to
p+N
α (N) =

p+N−1
α (N−1)dyN +

p+N
α (N−1),where

p
a(N−1)and

p+1
a (N−1)respectively

correspond to
p+N−1

α (N−1)and
p+N
α (N−1)on M × IN−1. It should be noted that

this representation depends on the choice of canonical basis.
The exterior product of two type N generalized forms, say a p- and a

q-form, does not correspond to the exterior product of the related (p + N)-
and (q + N)- ordinary forms. The product of the two generalized forms is
a (p + q)-generalized form of type N and so corresponds to a (p + q + N)-
ordinary form. In fact the exterior product of the generalized forms can be
viewed as defining a new product for ordinary forms belonging to the subset

{
p+N
α (N)}.
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