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Abstract
This technical report is an updated addendum to [1] where polychains and

a Stokes’ theorem for generalized forms were introduced. Here these concepts
are studied further with particular emphasis on typeN = 2 generalized forms.
The second Chern class and first Pontrjagin class and their variations are
considered. An example related to the full and linearized Einstein vacuum
field equations is also presented. This addendum includes review material
in order to make it reasonably self contained.
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1 Introduction

In [1] polychains (poly-chains) and a Stokes’ theorem for generalized forms
were introduced and used in the construction of generalized characteristic
classes and actions for Einstein-Yang-Mills theory. Whereas an ordinary
characteristic class may be obtained by integrating an ordinary differential
form over an ordinary chain, generalized characteristic classes are obtained
by integrating generalized forms over polychains. The latter are ordered sets
of ordinary (real, singular) chains. The primary focus in this addendum is
on type N = 2 generalized forms and its main purpose is to exhibit their
use in the construction of generalized second Chern classes, generalized first
Pontrjagin classes and Chern-Simons three-forms.
An outline of the properties of type N generalized forms and integration

over type N polychains is given in section two. As in [1] two cases, corre-
sponding to two classes of exterior derivatives, are carried along. In the third
section these results are considered further for type N = 2 forms. Both of
these sections contain discussions of generalized connections, the generalized
second Chern class and first Pontrjagin class, and generalized Chern-Simons
three forms.
The fourth section contains an example in which a class of type N = 2

so(p, q)−valued connections is exhibited. These connections and fields are
first defined on a manifoldM , of dimension n � p+q which is not assumed to
be metric. Metric structures on the chains, if they exist, are defined by the
pull-backs of the generalized connections and their group structure. There
can be singularities in the metric geometry, or no metric geometry at all, on
the polychains. These connections are flat on the polychains when either the
full Einstein’s vacuum field equations are satisfied or the linearized equations
are satisfied, depending on which class of exterior deriviative is used.
The notation employed in this report is the same as in [1]. Bold-face

Roman letters again denote generalized forms. Ordinary forms are again
denoted by Greek letters. Where it is useful the degree of a form is indicated

above it, for example
p
a. When the degree is obvious from the context it will

not be indicated so explicitly. The exterior product of any two forms, α and

β, is written αβ. As usual any ordinary form
q
α, with q either negative or

greater than n is zero. Hence type N generalized forms,
p
a, with p less than

minus N or greater than n are zero. This report develops results which can
be found primarily in [1], [2] and [5]. References to other work on generalized
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forms can be found in those papers.

2 Review of generalized forms

A generalized p-form of type N = 0 is an ordinary differential p-form sat-
isfying the standard exterior algebra and calculus. Any generalized p-form
of type N ≥ 1 can be uniquely expressed in terms of a basis of ordinary
forms on M augmented by N linearly independent minus one-forms, {mi}
(i = 1, 2, .., N). These latter quantities have the same algebraic proper-
ties as ordinary exterior p-forms, apart from p taking the value minus one
in the usual formulae. In particular they are assumed to satisfy the ordi-
nary distributive and associative laws of exterior algebra; the product rules,

mimj = −mjmi and
p
αmi = (−1)pmi pα, where

p
α is any ordinary p-form;

together with the condition of linear independence, m1m2....mN �= 0. A

generalized p-form of type N ≥ 1,
p
a(N) ∈ Λ

p

(N)(M), is thus a geometrical
object with a unique expansion of the form

p
a(N) =

p
α+

∑

1�j�N

1

j!

p+j
α i1....ijm

i1 .....mij ,

where
p
α,

p+j
α i1....ij =

p+j
α [i1....ij ]are, respectively, p-and (p + j)- ordinary forms;

−N � p � n, 1 � j � N and i1,...ij , ..., iN range and sum over 1, 2, .. N . It
follows that generalized forms satisfy the usual distributive and associative
laws of exterior algebra, together with the product rule

p
a
q

b = (−1)pq
q

b
p
a. (1)

For each allowed value of p, Λp(N)(M) is a module over the ring of function

on M and Λ(N)(M) = ⊕p=np=−NΛ
p

(N)(M) is a graded algebra with the above

exterior product Λp(N)(M)× Λ
q

(N)(M) → Λp+q(N)(M).
Any p-form of type N ≥ 1 can be expressed as a of a pair generalized

forms of type N − 1, that is as

p
a(N) ≡

p
a(N−1) +

p+1
a (N−1)m

N , (2)

and, when N > 1, each of the type (N − 1) forms can be expressed in
terms of an ordered pair of (N − 2) forms, and so on. It follows that if
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q

bN =
q

b(N−1) +
q+1

b (N−1)m
N is a q-form of type N ≥ 1, then the exterior

product of
p
a(N)and

q

b(N)is the p+q-form of type N given (recursively) by

p
a(N)

q

b(N) =
p
a(N−1)

q

b(N−1) + [
p
a(N−1)

q+1

b (N−1) + (−1)
qp+1a (N−1)

q

b(N−1)]m
N . (3)

If ϕ is a smooth map ϕ :M1 →M2, then the induced map of generalized
forms, ϕ∗(N) : Λ

p

(N)(M2) → Λp(N)(M1), is the linear map defined (recursively)
by using the standard pull-back map for ordinary forms

ϕ∗(N)(
p
a) = ϕ∗(N−1)(

p
a(N−1)) + ϕ∗(N−1)(

p+1
a (N−1))m

N , (4)

with ϕ∗(0) being the ordinary map, ϕ
∗, of ordinary forms; then ϕ∗(N)(

p
a
q

b) =

ϕ∗(N)(
p
a)ϕ∗(N)(

q

b). In future ϕ∗(N) will be written ϕ
∗.

In the exterior calculus of generalized forms the exterior derivative oper-
ators d : Λp(N) → Λp+1(N) agree with the usual exterior derivative when they act

on type N = 0 (ordinary) forms and the usual type of rules are also satisfied
when N > 0, that is

d(
p
a+

p

b) = d
p
a+ d

p

b, dϕ(X) = X(ϕ),

d(
p
a
q

b) = (d
p
a)

q

b+ (−1)p
p
ad

q

b, (5)

d2
p
a = 0.

where X is any vector field and ϕ any function on M . As is well known,
when N = 0 the exterior derivative d : Λp(0)(M) → Λp+1(0) (M) satisfies these

conditions and is unique [3], but when N is greater than zero d is not unique
[2]. Here, as in [2] and [1] two cases will be considerd. These correspond to
the choices of bases for which

dmi = δi1ε, (6)

1 � i � N . In the first case ε = 0. In the second case ε is a non-zero
constant. It can be convenient to scale the minus one-formm1 so that ε = 1
but that will not be done here. These bases are not necessarily unique but
will be assumed fixed in this paper.
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It follows that the exterior derivative of a generalized p−form
p
a(N)is the

generalized (p+ 1)−form

d
p
a(N) = d(

p
a(N−1)) + d(

p+1
a (N−1))m

N , (7)

when N > 1, and when N = 1

d
p
a(1) = d

p
α+ (−1)p+1ε

p+1
α + d

p+1
α m1, (8)

where
p
a(1) =

p
α+

p+1
α m1. These exterior derivatives cleary satisfy ϕ∗(d

p
a(N)) =

d(ϕ∗
p
a(N)). In the second case, where ε is non zero, a closed type N > 0 form

is closed if and only if it is exact and the cohomology is trivial. In the first
case a closed type N > 0 is closed (respectively exact) if and only if all the
closed ordinary forms defining it are closed (respectively exact).
Integration of generalized forms is defined by using polychains [1]. The

latter may be defined recursively. A p−polychain of type N = 1 in M is an
ordered pair of type N = 0, or ordinary, (real, singular) chains in M

c(1)p = (cp, cp+1), (9)

where cp is an ordinary p−chain and cp+1 is an ordinary p+1−chain. When
N > 1 a p−polychain of type N in M is an ordered pair of type N − 1 (real,
singular) chains in M

c(N)p = (c(N−1)p , c
(N−1)
p+1 ), (10)

If the ordinary chains have respective boundaries ∂cp, ∂cp+1 the boundary

of the polychain c
(1)
p is the (p− 1)−polychain

∂c(1)p = (∂cp, ∂cp+1 + (−1)
pεcp), (11)

and when N > 1 the boundary is

∂c(N)p = (∂c(N−1)p , ∂c
(N−1)
p+1 ). (12)

When N > 0 the integral of a generalized form
p
a(N)over a polychain c

(N)
p is

∫

c
(N)
p

p
a(N) =

∫

c
(N−1)
p

p
a(N−1) +

∫

c
(N−1)
p+1

p+1
a (N−1). (13)
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Stokes’ theorem for generalized forms and polychains is
∫

c
(N)
p

d
p−1
a (N) =

∫

∂c
(N)
p

p−1
a (N). (14)

Lie groups of generalized zero-forms of typeN > 1 can also be constructed

iteratively from the N = 1 case. Let G(N−1) = {
0
g(N−1)}, N > 1,be a Lie

group of type (N − 1) generalized zero-forms, and let H(N−1) = {
1
g(N−1)} be

an additive abelian Lie group of type (N − 1) generalized one-forms where

there is an ad-action, as above, of G(N−1) on H(N−1). Then G(N) = {
0
g(N)},

where
0
g(N) = (1(N−1) +

1
g(N−1)m

N )
0
g(N−1), (15)

with inverse (
0
g(N))

−1 = (
0
g(N−1))

−1(1(N−1) −
1
g(N−1)m

N).
Type N generalized connections, with values in the Lie algebra g of a

matrix Lie group G, will be considered here. Hence H = g and the connec-
tion one-forms, A(N), are g-valued type N generalized one-forms. It will be
assumed that matrix representations are being used so that the generalized
connections (and their constituent ordinary forms) are square matrix-valued.
The curvature 2-form is defined by the standard formula

F(N)=dA(N) +
1

2
[A(N),A(N)] (16)

where, as usual, the last term includes both the matrix and the exterior prod-
uct. It is convenient to introduce a differential operator D(N) - the covariant
exterior derivative defined by A(N). The covariant exterior derivative of a
type N generalized square matrix-valued p-form P(N) is defined to be

D(N)P(N) = dP(N) + [A(N),P(N)], (17)

and then
D2
(N)P(N) = [F(N),P(N)]. (18)

The bracket of generalized (square matrix-valued) p− and q−forms P(N)
and Q(N) is given by

[P(N),Q(N)]= P(N)Q(N)−(−1)
pq
Q(N)P(N).

As was noted above formulae can often be conveniently defined, recursively,
in terms of formulae for forms of lower type.
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Writing, for N � 1

A(N) = A(N−1) +B(N−1)m
N , (19)

where A(N−1) and B(N−1) are respectively type (N − 1) Lie algebra valued
one- and two-forms, it follows that

F(N) = F(N−1) + εB(N−1)δ
N
1 +D(N−1)B(N−1)m

N . (20)

The generalized connection is flat when F(N) = 0 and therefore

F(N−1) + εB(N−1)δ
N
1 = 0, (21)

D(N−1)B(N−1) = 0.

The generalized connection A(N) = (
0
g(N))

−1d
0
g(N), where

0
g(N)is a G(N) -

valued function, is flat. Under a generalized gauge transformation, [2],

A(N) → (
0
g(N))

−1d
0
g(N) + (

0
g(N))

−1A(N)
0
g(N), (22)

the curvature transforms in the usual way

F(N) → (
0
g(N))

−1F(N)
0
g(N). (23)

Henceforth it is assumed that, for any N , Tr(F(N)) = 0.
Generalized gauge transformations also preserve the generalized versions

of various characteristic classes, such as those determined by the generalized
Chern-Pontrjagin four-form

CP(N) =
1

8π2
[Tr(F(N)F(N))], (24)

which is equal to the exterior derivative of the generalized Chern-Simons
three-form CS(N)

CS(N) =
1

8π2
[Tr(A(N)F(N) −

1

3
A(N)A(N)A(N))]. (25)

In the case of particular interest here, where N > 1, it is a straightforward
matter to show thar

CP(N) = CP(N−1) +
1

4π2
d[Tr(F(N−1)B(N−1))]m

N , (26)
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and

CS(N) = CS(N−1) (27)

+
1

8π2
{Tr[F(N−1)B(N−1) − (D(N−1)B(N−1))A(N−1) −A(N−1)A(N−1)B(N−1)]}m

N ,

and so on. Hence if c
(N)
4 = (c

(N−1)
4 , c

(N−1)
5 ),

∫

c
(N)
4

CP(N) =

∫

c
(N−1)
4

CP(N−1) +
1

4π2

∫

∂c
(N−1)
5

[Tr(F(N−1)B(N−1))], (28)

and if c
(N)
3 = (c

(N−1)
3 , c

(N−1)
4 ),

∫

c
(N)
3

CS(N) =

∫

c
(N−1)
3

CS(N−1)+ (29)

+
1

8π2

∫

c
(N−1)
4

Tr[F(N−1)B(N−1) − (D(N−1)B(N−1))A(N−1) −A(N−1)A(N−1)B(N−1)].

Under the generalized gauge transformation above

CP(N)→ CP(N), (30)

CS(N)→ CS(N)−
1

8π2
d{Tr[(dg(N))(g(N))

−1A]}−
1

24π2
Tr[(g−1(N)dg(N))

3].

The last (generalized winding number) term is closed so that when c
(N)
3 =

∂c̃
(N)
4 ∫

c
(N)
3

CS→

∫

c
(N)
3

CS. (31)

Finally in this section it should be noted that results for global ordinary
connections and their local connection one-form formulations may be gen-
eralized straightforwardly to apply to generalized connections. Briefly, and
avoiding using the label (N) where possible, a global generalized connec-
tion may be defined by specifying for any open covering {Ui} of M , tran-

sition functions tij : Ui ∩ Uj → G(N) by p →
0
tij(p) satisfying

0
tii(p) = 1,

p ∈ Ui,
0
tij(p) = [

0
tji(p)]

−1 p ∈ Ui ∩ Uj,
0
tij(p)

0
tjk(p) =

0
tik(p) p ∈ Ui ∩ Uj ∩ Uk

and local generalized connection one-forms Ai, on each Ui, related by Aj =
(tij)

−1Aitij + (tij)
−1dtij on Ui ∩ Uj. Transition functions {tIJ} and {t̃IJ}

are (gauge) equivalent when t̃IJ = (gI)
−1tIJgJ and gI and gJ respectively

determine generalized gauge transformations in UI and UJ as in Eq.(22)
above.
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3 Type N = 2 generalized forms

This section expands on the results above in the case of type N = 2 gener-
alized forms on an n dimensional manifold M . These are elements of the
Λ(2)(M) = ⊕

p=n
p=−2Λ

p

(2)(M), where Λ
p

(2)(M) denotes the type N = 2 general-

ized p−forms on M . A generalized p−form,
p
a ∈ Λp(2)(M), may be written

out in terms of ordinary forms and minus one-forms as

p
a =

p
α+

p+1
α 1m

1 +
p+1
α 2m

2 +
p+2
α m1m2, (32)

where m1 and m2 are two linearly independent degree minus one−forms,
with non-zero exterior product m1m2. The degrees of the ordinary differen-

tial forms
p
α,

p+1
α 1,

p+1
α 2,

p+2
α are p, p+1 and p+2. For non-zero, type N = 2,

generalized forms p can take integer values from −2 to n. If

q

b =
q

β +
q+1

β 1m
1 +

q+1

β 2m
2 +

q+2

β m1m2 (33)

is a generalized q−form of type N = 2, the exterior product,
p
a
q

b, is given by

the degree (p+ q) generalized form
p+q
c ∈ Λp+q(2) (M) where

p+q
c =

p+q
γ +

p+q+1
γ1 m

1 +
p+q+1
γ2 m

2 +
p+q+2
γ m1m2, where (34)

p+q
γ =

p
α
q

β,

p+q+1
γ1 =

p
α
q+1

β 1 + (−1)
qp+1α 1

q

β,
p+q+1
γ2 =

p
α
q+1

β2 + (−1)
qp+1α2

q

β,

p+q+2
γ =

p
α
q+2

β + (−1)q+1
p+1
α 1

q+1

β2 + (−1)
qp+1α 2

q+1

β 1 +
p+2
α

q

β.

As noted in the previous section there are two cases of exterior derivative
to be considered

dmi = δi1ε, (35)

with i, j, k summing and ranging over one to two. In the first case ε = 0
while in the second case ε is a fixed non-zero constant. It can be shown
that the basis of minus one-forms can always be so chosen, [2]. The exterior

derivative of a generalized p−form
p
a(2)is the generalized (p+ 1)−form

d
p
a(2) = [d

p
α+ (−1)p+1ε

p+1
α 1] + d

p+1
α 1m

1 + [d
p+1
α 2 + (−1)

pε
p+2
α ]m2 + d

p+2
α m1m2.

(36)
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A type N = 2 form
p
a is closed if and only if

d
p
α+ (−1)p+1ε

p+1
α 1 = 0,

d
p+1
α 1 = 0, (37)

d
p+1
α 2 + (−1)

pε
p+2
α = 0,

d
p+2
α = 0.

Hence in case (i), where ε = 0,
p
a is closed if and only if all the ordinary forms

defining it are closed. On the other hand in case (ii), where ε is non-zero,
p
a

is closed if and only if it is exact. In the latter case

p
a =

p
α+ ε−1(−1)pd

p
αm1 +

p+1
α 2m

2 + ε−1(−1)p+1d
p+1
α2m

1m2 (38)

= d[(−1)pε−1
p
αm1 + (−1)p+1ε−1

p+1
α2m

1m2].

A p−polychain of type N = 2 in M is an ordered quadruple of ordinary
(real, singular) chains in M

c(2)p = (cp, c
1
p+1, c

2
p+1, cp+2), (39)

where cp is an ordinary p−chain, c
1
p+1 and c

2
p+1 are ordinary p+1−chains and

cp+2 is an ordinary p + 2−chain, [1]. The ordinary chains have respective

boundaries ∂cp, ∂c
1
p+1, ∂c

2
p+1 and ∂cp+2. The boundary of the polychain c

(2)
p

is the (p− 1)−polychain

∂c(2)p = (∂cp, ∂c
1
p+1 + (−1)

pεcp, ∂c
2
p+1, ∂cp+2 + (−1)

p+1εc2p+1), (40)

and ∂2c
(2)
p = 0. The integral of a generalized form

p
a(2) over a polychain c

(2)
p

is ∫

c
(2)
p

p
a(2) =

∫

cp

p
α+

∫

c1p+1

p+1
α 1 +

∫

c2p+1

p+1
α 2 +

∫

cp+2

p+2
α . (41)

When N = 2 Stokes’ theorem for generalized forms and polychains incorpo-
rates these expressions in the formula

∫

c
(2)
p

d
p−1
a (2) =

∫

∂c
(2)
p

p−1
a (2). (42)
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Now consider type N−2 connections, the generalized Chern-Pontrjagin four-
forms and Chern-Simons integrals
Let M be a smooth manifold of dimension n greater than or equal to six.

Consider now a g−valued type N = 2 connection one-form A on M , where
g is the Lie algebra of a (unimodular) matrix Lie group G,

A = ω +Θm1 +Σm2 +Πm1m2. (43)

Here ω is a g−valued one-form, Θ and Σ are a pair of g−valued two-forms,
and Π is a g−valued three-form and matrix representations are used.
The generalized curvature two-form is

F = (Ω + εΘ) +DΘm1 + (DΣ− εΠ)m2 + (DΠ+ΘΣ− ΣΘ)m1m2,

(44)

where Ω = dω + ωω.

Here D = D(0) denotes the covariant exterior derivative with respect to ω.
Under a G−gauge transformation

A�−→ (γ)−1dγ + γ−1Aγ, (45)

F�−→(γ)−1Fγ,

where γ is a G−valued function on M . A global generalized connection, on
a G−bundle over M can be constructed from these local expressions in the
usual way, for instance by first constructing a coordinate bundle, [4].
The generalized connection is flat, that is the generalized curvature F = 0,

if and only if

Ω = −εΘ, DΘ = 0, DΣ = εΠ, DΠ+ΘΣ− ΣΘ = 0. (46)

In case (i) where ε = 0, F = 0 if and only if

Ω = 0, DΘ = 0, DΣ = 0, DΠ+ΘΣ− ΣΘ = 0. (47)

Then a G−gauge can be chosen so that, in a contractible open set,

ω = 0, Θ = dϑ, Σ = dσ, Π = σdϑ− dϑσ + dπ,

where ϑ, σ and π are respectively two g−valued one-forms and a g-valued
two-form. The latter three forms are not unique of course (with the freedom
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ϑ → ϑ + d
0
χ1, σ → σ + d

0
χ2, π → π + dϑ

0
χ2 −

0
χ2dϑ + d

1
χ, where

0
χ1and

0
χ2

are arbitrary g-valued functions and
1
χ is a g-valued one-form). Thus, when

ε = 0, the flat generalized potential can be written, in a general G−gauge,
as

A = (γ)−1dγ + γ−1[dϑm1 + dσm2 + (σdϑ− dϑσ + dπ)m1m2]γ, (48)

where γ is a G−valued function on M .
In case (ii) where ε is non-zero, F = 0, if and only if

Θ = −ε−1Ω,Π = ε−1DΣ, (49)

and hence
A = ω − ε−1Ωm1 +Σm2 + ε−1DΣm1m2. (50)

As was noted in the previous section a generalized gauge transformation
can be associated with the matrix group G(2) and its Lie algebra g(2). This
is given by

A �−→ (g(2))
−1dg(2) + (g(2))

−1Ag(2) (51)

F �−→ (g(2))
−1
Fg(2),

where g(2) belongs to G(2), the group of type N = 2 zero-forms on M . Any
element of G(2) has the form

g(2) = [1 +
1
γ1m

1 +
1
γ2m

2 + (
2
γ +

1
γ2
1
γ1)m

1m2]
0
γ, (52)

where
0
γ is an ordinary G-valued zero-form, and

1
γ1,

1
γ2,

2
γ are two ordinary

g-valued one-forms and a g-valued two-form. The curvature F is zero if and
only if the connection one form is given by

A =(g(2))
−1dg(2), (53)

for some, non-unique, g(2) belonging to G(2).
In case (i) where ε = 0, when F = 0 a choice of g(2), in a contractible

open region in M , is

g(2) = [1 + ϑm1 + σm2 + {π̃ + σϑ}m1m2]γ. (54)

Here the g−valued two-form π̃ = π−(σϑ+ϑσ) and γ is a G−valued function
as above.
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In case (ii) where ε is non-zero, when F = 0 a choice of g(2) is

g(2) = [1− ε−1ωm1 + ε−1Σm1m2]. (55)

Next consider the generalized Chern-Pontrjagin forms and integrals.
Since Tr(F) = 0, the four-forms corresponding to the generalized second

Chern class or generalized first Pontrjagin class on M are equal to

CP=kTr(FF) (56)

= kTr{ΩΩ + 2εΩΘ+ ε2ΘΘ+

+ d(2ΩΘ + εΘΘ)m1 + [2d(ΩΣ) + 2ε(ΘDΣ− ΩΠ− εΘΠ)]m2 (57)

+ 2d(ΩΠ + εΘΠ−ΘDΣ)m12},

letting the constant k = κ
8π2
, (in the previous section k = 1

8π2
). The gener-

alized four-form, CP, is of course invariant under both the gauge transfor-
mations and the generalized gauge transformations above.
Using the results of section two with p = 4, together with Stoke’s theorem,

the generalized second Chern-Pontrjagin class integral for a polychain c
(2)
4 =

(c4, c
1
5, c

2
5, c6) is given by the integral

∫

c
(2)
4

CP=k

∫

c
(2)
4

Tr(FF) (58)

= k[

∫

c4

Tr(ΩΩ + 2εΩΘ+ ε2ΘΘ]+

+

∫

∂c15

Tr(2ΩΘ + εΘΘ) + 2

∫

∂c25

Tr(ΩΣ) + 2ε

∫

c25

Tr(ΘDΣ− ΩΠ− εΘΠ)

+ 2

∫

∂c26

Tr(ΩΠ + εΘΠ−ΘDΣ)].

The generalized four-form, CP, is the exterior derivative of a generalized
Chern-Simons three-form, CS, CP =d(CS), where

CS = kTr(AF−
1

3
AAA) (59)

= kTr{ωΩ−
1

3
ωωω + εωΘ+ [2ΩΘ + εΘΘ− d(ωΘ)]m1

+ [2ΩΣ + εΣΘ− d(ωΣ)− εωΠ]m2 (60)

+ [ΣDΘ−ΘDΣ+ 2ΠΩ + 2εΠΘ− d(ωΠ)]m1m2}.
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The generalized Chern-Simons integral for a polychain c
(2)
3 = (c3, c

1
4, c

2
4, c5)

is, after using Stoke’s theorem, given by

∫

c
(2)
3

CS = k{

∫

c3

Tr(ωΩ−
1

3
ωωω + εωΘ)+

∫

c14

Tr(2ΩΘ + εΘΘ)−

∫

∂c14

Tr(ωΘ)+ (61)

+

∫

c24

Tr(2ΩΣ + εΣΘ− εωΠ)−

∫

∂c24

Tr(ωΣ)+

+

∫

c5

Tr(ΣDΘ−ΘDΣ+ 2ΠΩ + 2εΠΘ)−

∫

∂c5

Tr(ωΠ)}.

When the polychain c
(2)
3 is the boundary of a polychain c̃

(2)
4 = (c̃4, c̃

1
5, c̃

2
5, c̃6),

so that

c
(2)
3 = ∂c̃

(2)
4 = (∂c̃4, ∂c̃

1
5 + εc̃4, ∂c̃

2
5, ∂c̃6 − εc̃25), that is (62)

c3 = ∂c̃4, c
1
4 = ∂c̃15 + εc̃4, c

2
4 = ∂c̃25, c5 = ∂c̃6 − εc̃25,

then
∫

∂c̃
(2)
4

CS = k{

∫

∂c̃4

Tr(ωΩ−
1

3
ωωω) +

∫

∂c̃15+εc̃4

Tr(2ΩΘ + εΘΘ)+ (63)

+

∫

∂c̃25

Tr(2ΩΣ + εΣΘ− εωΠ)+

∫

∂c̃6−εc̃
2
5

Tr(ΣDΘ−ΘDΣ + 2ΠΩ + 2εΠΘ) +

∫

ε∂c̃25

Tr(ωΠ)}.

By Stoke’s theorem for generalized forms

∫

∂c̃
(2)
4

CS =

∫

c̃
(2)
4

CP. (64)

Under the G−gauge transformation

CP→ CP, (65)

CS→ CS−kd{Tr[(dγ)γ−1A]}−
k

3
Tr[(γ−1dγ)3].
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The last (winding number) term is closed so when c
(2)
3 = ∂c̃

(2)
4

∫

c
(2)
3

CS→

∫

c
(2)
3

CS. (66)

Again, when generalized gauge transformations, G(2)−gauge transforma-
tions, are considered the generalized winding number term is again closed
and both of the above equations hold when γ is replaced by g(2).
Next consider variations of these forms and invariants. Analogously to

the result for ordinary forms the variation of a generalized Chern-Simons
three-form is given by

δCS = k2Tr[(δA)F]+kd{Tr[(δA)A]}. (67)

and hence

δ

∫

c
(2)
3

CS = k{2

∫

c
(2)
3

Tr[(δA)F]+

∫

∂c
(2)
3

Tr[(δA)A]}. (68)

For type N = 2 connections

δA = δω + δΘm1 + δΣm2 + δΠm1m2, (69)

where δω, δΘ, δΣand δΠ denote variations of ordinary forms. The terms
entering Eq.(67) are therefore the traces of

(δA)F = δω(Ω + εΘ) + [δωDΘ+ δΘ(Ω + εΘ)]m1 (70)

+ [δω(DΣ− εΠ) + δΣ(Ω + εΘ)]m2

+ [δω(DΠ +ΘΣ− ΣΘ) + δΘ(εΠ−DΣ)+

+ δΣDΘ+ δΠ(Ω + εΘ)]m1m2,

and

(δA)A = δωω + (δωΘ− δΘω)m1 + (δωΣ− δΣω)m2 (71)

+ (δωΠ + δΠω + δΘΣ− δΣΘ)m1m2.
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When, as in Eq.(62), c
(2)
3 = ∂c̃

(2)
4 it follows that

δ

∫

∂c
(2)
4

CS = kTr{

∫

∂c̃4

δω(Ω + εΘ) +

∫

∂c̃15+εc̃4

[δωDΘ+ δΘ(Ω + εΘ)] (72)

+

∫

∂c̃25

[δω(DΣ− εΠ) + δΣ(Ω + εΘ)]

+

∫

∂c̃6−εc̃
2
5

[δω(DΠ+ΘΣ− ΣΘ) + δΘ(εΠ−DΣ)+

+ δΣDΘ+ δΠ(Ω + εΘ)]}.

Expressions like this have been used in the Euler-Lagrange approach to
generalized Chern-Simons formulations of field theories in the type N = 1
case [1]. More generally variational principles, with variations and Euler-
Lagrange equations on different manifolds of different dimensions, arise nat-
urally when action integrals of generalized fields are used.
Finally in this section it should be recalled, [1], that if a is a closed

generalized zero-form and

a =
0
α+

1
α1m

1 +
1
α2m

2 +
2
αm1m2, (73)

then in the first case where ε = 0 the ordinary forms
0
α,

1
α1,

1
α2 and

2
α are all

closed and in the second case where ε is non-zero

a = α+ ε−1dαm1 + βm2 − ε−1(dβ)m1m2 (74)

=ε−1d[αm1 − βm1m2],

where α =
0
α and β =

1
α2. In both cases it follows that

aCP =d(aCS). (75)

4 An so(p,q)-valued type N=2 connection

In this section generalized connections which have been introduced in an
earlier paper, [5], will be discussed and then employed in the construction of
generalized Chern-Simons forms.
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Consider the so(p, q)−valued typeN = 2 generalized connection one-form
A on an n−dimensional manifold M , where n � p+ q and so(p, q) is the Lie
algebra of SO(p, q),

A = ω + (
µ

2
Ψ + νΣ)m1 +Σm2. (76)

Here µ and ν are constants, ω, Ψ and Σ are a so(p, q)−valued one-form and
a pair of so(p, q)−valued two-forms respectively and (p+ q)× (p+ q) matrix
representations are used. Using an index notation

ω ↔ ωab, Σ↔ Σa.b = θaθb, Ψ↔ Ψa.bcdΣ
cd, (77)

Aa
b = ωab + (

µ

2
Ψa.bcdΣ

cd + νΣa.b)m
1 + Σa.bm

2,

and lower case Latin indices a, b, c, d range and sum over 1 to (p+q) � n. The
one-forms θa are ordinary forms onM and Ψa.bcd has the algebraic symmetries
of a SO(p, q)Weyl conformal tensor. Indices are raised and lowered by using
the SO(p, q) metric

(ηab) =

(
1p×p 0
0 −1q×q

)
. (78)

In this example it will be assumed again that the basis of minus one-forms
is chosen so that dm1 = ε and dm2 = 0, where ε is a fixed real parameter.
The curvature two-form is

Fab = (Ω
a
b+

εµ

2
ΨabcdΣ

cd+ενΣa.b)+[D(
µ

2
ΨabcdΣ

cd+νΣa.b)]m
1+DΣa.bm

2; (79)

where D denotes the covariant exterior derivative with respect to ωab and
Ωab = dωab + ωacω

c
b. Henceforth assume that 4 � (p+ q) � n.

In case (i) where ε = 0 the curvature two-form Fab is zero if and only if

Ωab = 0; µD(Ψ
a
bcdΣ

cd) = 0; DΣa.b = 0. (80)

When (the pullbacks of) the one-forms {θa} are linearly independent on
a (p+q)− dimensional chain (or sub-manifold) S inM , Fab = 0 if and only if
ωa.b is the Levi-Civita connection of the flat SO(p, q) metric ds

2 = ηabθ
a ⊗ θb

on S. In local coordinates {ξa} on S for which ds2 = ηabdξ
a ⊗ dξb the

generalized connection then takes the form

Aa
b = (γ

−1)acdγ
c
b + (γ

−1)ae[(
µ

2
Ψefcddξ

cdξd+ νdξedξf)m
1+ dξedξfm

2]γfb , (81)
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where (γab ) is a SO(p, q)−valued function. In addition, if µ is non-zero, on S

∇[e(Ψ
ab
..cd]) = 0, (82)

where∇ denote the the Levi-Civita covariant derivative. When S is topolog-
ically Rp+q this is equivalent to the Ricci tensor, linearized about flat space,
vanishing. In particular, when p+q = 4, and the signature is Lorentzian, the
metric on S is the flat Minkowski four-metric and Ψa.bcd are the components
of a zero rest-mass spin two field in Minkowski space-time. The equivalence
of the zero rest-mass spin two field equations in four dimensional Minkowski
space-time and the linearized Einstein vacuum field equations was pointed
out by Trautman [6], see also [7] .
In case (ii) where ε is a non-zero constant the curvature two-form Fab is

zero if and only if

Ωab = −
εµ

2
ΨabcdΣ

cd − ενΣa.b, and DΣ
a
.b = 0. (83)

When the choice εµ = −1 is made it follows that, for any (p+q)− dimensional
chain S in M on which (the pullbacks of) the one-forms {θa} are linearly
independent, Fab = 0 if and only if

dωa.b + ωa.cω
c
.b =

1

2
Ψa.bcdΣ

cd + λθaθb, (84)

D(θaθb) = 0,

where λ = −εν. In other words ωa.b is the Levi-Civita connection of an
Einstein SO(p, q) metric, ds2 = ηabθ

a ⊗ θb on S, with non-zero cosmological
constant if ν is non-zero.
To conclude this example the corresponding generalized Chern-Pontrjagin

and Chern-Simons expressions will be exhibited.
The corresponding four-form CP on M is

CP=kFabF
b
a (85)

= k{ΩabΩ
b
a + 2εΩ

a
b(
µ

2
ΨbacdΣ

cd + νΣb.a) + ε2
µ2

4
ΨabcdΨ

b
aefΣ

cdΣef

+ d[2Ωab(
µ

2
ΨbacdΣ

cd + νΣb.a) + ε
µ2

4
ΨabcdΨ

b
aefΣ

cdΣef ]m1 + 2d(ΩabΣ
b
a)m

2}.
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By using Stokes’ theorem, the invariant on a polychain c
(2)
4 = (c4, c

1
5, c

2
5, c6)

can be written as
∫

c
(2)
4

CP=k

∫

c
(2)
4

FabF
b
a (86)

= k{

∫

c4

[ΩabΩ
b
a + 2εΩ

a
b(
µ

2
ΨbacdΣ

cd + νΣb.a) + ε2
µ2

4
ΨabcdΨ

b
aefΣ

cdΣef ]+

+

∫

∂c15

[2Ωab(
µ

2
ΨbacdΣ

cd + νΣb.a) + ε
µ2

4
ΨabcdΨ

b
aefΣ

cdΣef ] + 2

∫

∂c25

[ΩabΣ
b
a]}.

The generalized Chern-Simons three-form, CS, is

CS = k(Aa
bF

b
a −

1

3
Aa

bA
b
cA

c
a) (87)

= k{[ωabΩ
b
a −

1

3
ωabω

b
cω
c
a + εωab(

µ

2
ΨbacdΣ

cd + νΣb.a)]+

+ [2Ωab(
µ

2
ΨbacdΣ

cd + νΣb.a) + ε
µ2

4
ΨabcdΨ

b
aefΣ

cdΣef − d(ωab
µ

2
ΨbacdΣ

cd + νωabΣ
b
.a)]m

1

+ [2ΩabΣ
b
a − d(ωabΣ

b
a)]m

2},

where the property Ψa[bcd] = 0 has been used.
If

c
(2)
3 = (c3, c

1
4, c

2
4, c5), (88)

then, after using Stoke’s theorem, the generalized Chern-Simons integral is

∫

c
(2)
3

CS = k{

∫

c3

[ωabΩ
b
a −

1

3
ωabω

b
cω
c
a + εωba(

µ

2
ΨabcdΣ

cd + νΣa.b)]+ (89)

+

∫

c14

[2Ωba(
µ

2
ΨabcdΣ

cd + νΣa.b) + ε
µ2

4
ΨabcdΨ

b
aefΣ

cdΣef ]

−

∫

∂c14

[ωba(
µ

2
ΨabcdΣ

cd + νΣa.b)] +

∫

c24

(2ΩabΣ
b
a)−

∫

∂c24

(ωabΣ
b
a)}.

When, as above, c
(2)
3 = ∂c̃

(2)
4 = (∂c̃4, ∂c̃

1
5+εc̃4, ∂c̃

2
5, ∂c̃6−εc̃

2
5) so that ∂c̃

(2)
3 = 0,

19



this integral reduces to

∫

c
(2)
3

CS = k{

∫

∂c̃4

(ωabΩ
b
a −

1

3
ωabω

b
cω
c
a)+ (90)

+

∫

∂c̃15+εc̃4

[2Ωba(
µ

2
ΨabcdΣ

cd + νΣa.b) + ε
µ2

4
ΨabcdΨ

b
aefΣ

cdΣef ]+

+

∫

∂c̃25

(2ΩabΣ
b
a)}.
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