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Abstract

The properties of generalised p-forms, first introduced by Sparling,

are discussed and developed. Generalised Cartan structure equations

for generalised affine connections are introduced. A new representa-

tion of Einstein’s equations, using genneralised forms is given.
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In this letter a development of a generalized exterior algebras and calculi
of p-forms, will be presented. This type of extension of the ordinary calculus
and algebra of differential forms was first introduced by Sparling in order to
associate an abstract twistor structure with any real analytic Einstein space-
time, [1-4]. However it is clear that it is a tool which can be employed in
more general physical and geometrical contexts. Here the aim is to show how
the formalism can be further developed by constructing certain generalized
connections and using them to provide a formulation of Einstein’s vacuum
equations.

A generalized p-form,
p
a, is defined to be an ordered pair of ordinary p-

and p+1-forms, that is

p
a ≡ (

p
α,

p+1
α ) ∈ Λp × Λp+1, (1)

where Λp denotes the module of p-forms on a differentiable manifold M of
dimension n. By defining a minus one-form to be an ordered pair

−1
a = (0,

0
α), (2)

where
0
α is a function on M, the range of p can be taken to be −1 ≤ p ≤ n.

The manifold and forms may be real or complex but here n is taken to be
the real dimension of M. The module of generalised p-forms will be denoted
by Λp

G and the formal sum
∑p

−1≤p≤n Λp
G will be denoted by ΛG. The letters

over the forms indicate the degrees of the forms. Whenever these degrees
are obvious they will be omitted. In the following bold Latin letters will be
used for generalized forms and normal Greek letters for ordinary forms. A

generalized form given by a pair (
p
α, 0) will be identified with the ordinary

p-form
p
α. Hence, for example, a function on M will be identified with the

generalized 0-form (
0
α, 0) while the pair (0,

0
α) defines a generalized minus

one-form.

If
p
a ≡ (

p
α,

p+1
α ) and

q

b ≡ (
q

β,
q+1

β ), then the (left) generalized exterior prod-
uct, ∧ : Λp

G × Λq
G → Λp+q

G , and the (left) generalized exterior derivative, d :
Λp

G → Λp+1
G , are defined to be:

p
a ∧

q

b ≡ (
p
α ∧

q

β,
p
α ∧

q+1

β + (−1)qp+1
α ∧

q

β) (3)

and
d

p
a ≡ (d

p
α + (−1)p+1k

p+1
α , d

p+1
α ), (4)
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where k is a constant which, in the following, is assumed to be non-zero. It
should be noted that it follows that

−1
a ∧

−1

b = (0, 0). (5)

These exterior products and derivatives of generalised forms can easily
be shown to satisfy the standard rules of exterior algebra and calculus. This
exterior product is associative and distributive. If a and b are, respectively
generalized p-forms and q-forms then a ∧ b = (−1)pqb ∧ a. The exterior
derivative is an anti-derivation from p-forms to (p+1)-forms, that is d(a ∧
b) = da ∧ b + (−1)pa ∧ db. Furthermore, d2 = 0.

The above rules for the exterior algebra and calculus follow immediately
if, following Sparling in references [1-3] , the existence of a form ς, of degree
minus one, is assumed to exist and satisfy all the basic rules of exterior
algebra and calculus, together with the condition that dς = k. Tthe rules
for exterior multiplication and exterior differentiation, given above, follow

when the generalized p-form
p
a = (

p
α,

p+1
α ), is identified with

p
α +

p+1
α ∧ ς and

then added, multiplied and differentiated according to the ordinary rules of
exterior algebra and calculus.1

The following generalized Poincaré lemma holds. Let
p
a ≡ (

p
α,

p+1
α ) be a

closed generalized p-form, so that d
p
a = 0. Then,

(a) d
−1
a = 0 if and only if

−1
a = 0;

(b) in any simply connected neighbourhood of any point of M,

(i) d
0
a = 0 if and only if there exist ordinary 0-forms

0

β such that
0
a = (

0

β

, k−1d
0

β) or
0
a = d

−1

b ,

where
−1

b = (0, k−1
0

β).

(ii) d
p
a = 0, 1 ≤ p ≤ n, if and only if there exist ordinary (p-1)- and

p-forms
p−1

β and
p

β such that
p
a = (d

p−1

β + (−1)pk
p

β, d
p

β). Hence
p
a = d

p−1

b , where
p−1

b = (
p−1

β ,
p

β).
Next consider Lie groups and Lie algebras and let G= Gl(n) or one of

its sub-groups. In the present context it is natural to associate with G the

1Similarly rules for right exterior multiplication and right exterior derivatives can be

obtained by identifying a generalised p-form
p

a is identified with
p

α+ ς ∧
p+1
α . The resulting

right algebra and calculus is isomorphic to the left exterior algebra and calculus and it is

the latter which is always used in this paper.

3



semi-direct product of G and the Lie algebra of G (viewed as an additive
abelian group). Define the (associated) Lie group G by

G = {a | a = α(1, A)}, (6)

α(1, A) ≡ (α, 0) ∧ (1, A) = (α, αA),

where a is a generalized zero form, α belongs to the Lie group G (GL(n)
or a subgroup), with identity 1, and A is an ordinary 1-form with values in
the Lie algebra of G. The product of two elements of G, a = α(1, A) and
b = β(1, B) is given by the above rules for left exterior multiplication, and
is ab = αβ(1, B + β−1Aβ). The inverse of a is a−1 = α−1(1,−αAα−1) and
the identity is (1, 0), where 0 the zero 1-form. Right fundamental 1-forms r

are formally defined to be forms of the type

da ∧ a−1 = (dα ∧ α−1 − kαAα−1, α(dA + kA ∧ A)α−1), (7)

and satisfy the Maurer-Cartan equation

dr − r ∧ r =0. (8)

Similarly left fundamental 1-forms l are formally defined by a−1 ∧da. When
k is non-zero l can be neatly written in the form

l = (λ,−k−1(dλ + λ ∧ λ),

λ = α−1dα − kA, (9)

and l satisfies the Maurer-Cartan equation

dl + l ∧ l =0. (10)

Next, in order to construct generalised Cartan structure equations for
generalized connection and curvature forms on M, a generalised moving co-
frame of 1-forms, ea = (θa,−Θa), and a generalized Lie algebra valued 1-form
Γa

b = (ωa
b ,−Ωa

b ) are introduced. When the aim is to identify the latter as
a generalized affine connection, as it will be initially, the Lie algebra cor-
responding to the generalized structure group, G, is gl(n) or a sub-algebra
and the lower case Latin indices range and sum over 1 to n. It will be
convenient to use covariant exterior derivatives and the generalized covari-
ant exterior derivative is denoted here by D. The first generalized Cartan
structure equation is given by

Ta = Dea ≡ dea − eb ∧ Γa
b . (11)
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The generalized torsion, the 2-form Ta, is in fact given by

Ta = (dθa − θb ∧ ωa
b − kΘa,−DΘa + θb ∧ Ωa

b ), where

DΘa = dΘa + Θb ∧ ωa
b . (12)

Here D denotes an ordinary exterior covariant derivative. The second gen-
eralized Cartan structure equation is given by

Fa
b = dΓa

b + Γa
c ∧ Γc

b, (13)

and Fa
b is the generalized curvature of Γa

b . Here

Fa
b = (dωa

b + ωa
c ∧ ωc

b − kΩa
b ,−DΩa

b ), where

DΩa
b = dΩa

b + Ωc
b ∧ ωa

c − Ωa
c ∧ ωc

b. (14)

When θa is a co-frame on M, and ωa
b are connection 1-forms with torsion

kΘa and curvature kΩa
b , then the ordinary Cartan structure equations

dθa − θb ∧ ωa
b = kΘa,

dωa
b + ωa

c ∧ ωc
b = kΩa

b , (15)

and the ordinary Bianchi identities

DΘa = θb ∧ Ωa
b ,

DΩa
b = 0, (16)

are satisfied if and only if the generalized affine connection is flat. That is
equations (15) and (16) are equivalent to

Dea = 0,

Fa
b = 0. (17)

Hence when the ordinary Cartan structure equations are satisfied

ea = (a−1)a

bdx
b,

Γa
b = (a−1)a

cd(a)c

b, (18)

where aa
b = αa

c (δ
c
b , A

a
b ) is a generalized 0-form with values in the Lie group

G. Here αa
b has values in GL(n) (or the appropriate sub-group) and Aa

b has
values in the corresponding Lie algebra.
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Gauge transformations are determined by generalized functions on M with
values in the Lie group G, as above. The gauge transformations determined
by an element of G, again written aa

b = αa
c (δ

c
b , A

a
b ), are given by

ea → (a−1)a

be
b,

Γa
b → (a−1)a

cda
c
b + (a−1)a

cΓ
c
da

d
b ,

Dea → (a−1)a

bDeb,

Fa
b → (a−1)a

cF
c
da

d
b (19)

These transformations are equivalent to the following

θa → (α−1)a
bθ

b,

ωa
b → (α−1)a

cdαc
b + (α−1)a

cω
c
dα

d
b − kAa

b ≡ $a
b − kAa

b ,

Θa → (α−1)a
b [Θ

b − αb
cA

c
d(α

−1)d
e ∧ θe],

Ωa
b → (α−1)a

cΩ
c
dα

d
b − D$Aa

b + kAa
c ∧ Ac

b, (20)

where D$ denotes the covariant exterior derivative with respect to $a
b .

These formulae encode the affine structure and the formalism provides a
unifying framework for different connections. A simple example of this is
provided by the following result.

Proposition : Let a metric on M have line element

ds2 = ηabθ
a ⊗ θb, (21)

where ηab=ηba, are the components of the metric with respect to the co-
frame θa, are constant. Let ωa

b = ωa
bcθ

c be a general connection with torsion
Θa = 1

2
Θa

bcθ
b ∧ θc, Θa

bc = −Θa
cb, and let Aab = Aabcθ

c. Then if in the above
generalized gauge transformations αa

b = δa
b and

(i) if A(ab) = k−1ω(ab) the transformed connection is metric;
(ii) if, furthermore, A[ab] = {1/2[Θcab−Θbca−Θabc]+k−1ω(ac)b−k−1ω(bc)a}θ

c,
the transformed connection is also torsion free and hence is the Levi-Civita
connection of the metric.

Similar results can be derived for generalised connections on principal and
associated bundles. Rather than pursue that line here, an illustration of the
use of formalism above will be given by employing it to provide a simple
formulation of Einstein’s vacuum field equations in four dimensions. In
this example it is assumed that k is non-zero and not equal to one. Upper
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case Latin indices sum and range over 0-1 and are two-component spinor
indices,[5]. Consider the 4-metric on a four dimensional manifold M given
by

ds2 = αA ⊗ βA + βA ⊗ αA, (22)

where, αA and βA are spinor-valued 1-forms on M. Define the two generalized
spinor valued 1-forms

rA ≡ (αA,−k−1µA),

sA ≡ (βA, k−1υA), (23)

and the generalized connection 1-form

ΓA
B = (ωA

B,−ΩA
B), where

ΩA
B = dωA

B + ωA
C ∧ ωC

B , (24)

and ωA
B is a sl(2,C)-valued 1-form. Then it can be seen directly from reference

[6], (see also [7]), that the metric is Ricci flat if and only if the generalized
spinor valued 1-forms have vanishing exterior derivatives and their general-
ized exterior product is an ordinary 2-form. That is the metric is Ricci flat
if and only if r(A ∧ sB) are ordinary 2-forms and

DrA = 0,

DsA = 0, (25)

where D is the generalized exterior covariant derivative determined by ΓA
B.

These conditions encode the Ricci flatness of the metric and ensure that ωA
B

is the anti-self dual part of the Levi-Civita spin connection. Equations (25)
are formally similar to the first order equations used by Plebanski, [8], in his
analysis of half-flat geometries.

In conclusion it should be noted that the concept of a generalized p-
form discussed above is a special case of a broader generalisation in which
generalized p-forms are represented by n+1-tuples of ordinary forms. Using
the type of notation introduced by Sparling and mentioned above on an n
dimensional manifold, assume that n minus one-forms ςa exist and satisfy the
conditions ,

ζ1 ∧ ζ2..... ∧ ζn 6= 0,

dζa = ka,

ka constants, a = 1...n. (26)
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Now define a generalized p-form to be

p
a=

p
α +

p+1
α

a1

∧ ζa1
+ ......

n
α

a1a2...an−p

∧ ςa1
∧ ςa2

.... ∧ ςan−p
(27)

or, including zeros, the equivalent (n+1) tuple. Here
k
α

a1.....ak−p

=
k[
α

a1.....ak−p]

,
k = p to n, are ordinary k-forms (all sub-scripted indices ranging and sum-
ming over 1 to n). The rules for exterior multiplication and exterior deriva-
tive can be computed immediately from the last two equations. Extensions
to include super-symmetry and the infinite dimensional case appear to pose
no major formal problems. Further developments of the above formalisms,
including the definitions of Lie derivatives, general generalized connection
and metric geometries, generalized Hodge duality, co-differentials or adjoints,
inner products, Laplacians, co-homology, and physical aplications, will be
presented elsewhere.
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