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Abstract: Generalized differential forms of type N = 2, and flat general-
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type N = 2 forms are also constructed.
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1 INTRODUCTION

In recent years various generalizations of the standard exterior algebra and
calculus of differential forms have been discussed in the literature. An il-
lustrative sample of such studies, (Asada, 2001; Dubois-Violette, 1999, 2000;
Cotrill-Shepherd & Naber, 2001, 2003; Madore, 1999) also contains refer-
ences to related research. This paper is concerned with the further con-
sideration of another generalization, one in which the algebra and calculus
of ordinary exterior forms have been extended to an algebra and calculus
of different types of generalized differential forms. The approach followed
here has been developed in a number of papers (Nurowski & Robinson, 2001;
Nurowski & Robinson, 2002; Robinson, 2003), and applied to a variety of
physical systems including field theories (Guo et al, 2002) .

Ordinary differential forms are, by definition, generalized forms of type
N = 0. The expression for a single generalized form of type N , where N is a
non-negative integer, will usually include ordinary forms of different degrees.
For example, a generalized p-form of type N may include forms of degree
q, where p ≤ q ≤ N + p. Generalized forms of type N admit a number
of different representations (Robinson, 2003). In this paper they will be
described by using expansions which include N linearly independent minus
one-forms, ζ i, i = 1...N, and their exterior products. These minus one-forms
are required to satisfy the usual rules obeyed by ordinary p-forms, but for
them p = −1. In order to ensure that their exterior derivatives are zero-
forms and that d2 = 0, they are required to satisfy the condition dζ i = ki,
where ki are constants. Although there is a freedom in the choice of the
basis of minus one-forms, by a GL(N) transformation, and this may be used
to change the constants ki and certain components, it will be assumed here
that the basis is fixed and all the constants are non-zero. Consequently

a generalized p-form of type N will be written in this paper as
p
a =

p
α +

p+1
α i1ζ

i1 +
p+2
α i1i2ζ

i1ζ i2 + .... +
p+j
α i1....ijζ

i1.....ζ ij + ... +
p+N
α i1....iNζ i1.....ζ iN . Here

p
α,

p+1
αi1 , ...,

p+j
α i1....ij =

p+j
α [i1....ij ], ...,

p+N
α i1....iNare, respectively, ordinary p-, p+1-

,...,p+j-,...p+N- forms, 1 ≤ j ≤ N, and i1,...ij, ..., iN range and sum over
1 to N. Each separate term in such an expansion is a generalized form of
degree p. As in previous papers, bold-face Roman letters are used to denote
generalized forms, ordinary forms are always denoted by Greek letters, and,
where it is useful, the degree of a form is indicated above it. In this paper
the exterior product of any two forms, for example α∧ β, is written αβ. By
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standard convention any ordinary form
q
α , with q either negative or greater

than n, the dimension of the manifold M, is zero. When p ≥ 0 a generalized

form, such as
p
a above, may be regarded as an extension of the ordinary p-

form given by
p
α. Generalized forms of all different degrees and types obey the

same basic rules of exterior multiplication and differentiation as those which
govern the algebra and calculus of ordinary differential forms. Two basic

results are,
p
a

q

b = (−1)pq
q

b
p
a and d(

p
a

q

b) = d(
p
a)

q

b + (−1)p
p
a d(

q

b). There are
some differences from the standard results for ordinary, that is N = 0, forms
when N > 0. For instance, it follows from the definitions that generalized
forms of negative degree, p ≤ 0, are permitted, and it has been shown that
when N > 0 generalized forms are closed if and only if they are exact.

In this paper the focus will be on further applications of generalized
connections of type N = 2 (Robinson, 2003). The primary aim is to show
that Cartan’s, Einstein’s and the Yang-Mills equations can all be formulated
using flat generalized connections. First results on type N = 2 generalized
connections will be reviewed and the notation to be used in this paper will
be fixed. Then it will be shown that Cartan’s structure equations for metric
connections , on an n dimensional manifold M, can be simply represented
in terms of a type N = 2 flat generalized connection. In contrast to an
earlier approach using type N = 1 forms (Nurowski & Robinson, 2001) a
formulation using a basis of two forms, rather than a co-frame, is employed
here. Special cases, such as Ricci flat Levi-Civita connections, will also be
noted and the results hold in any dimension. Next, a result which applies in
four dimensional space-times, and which is suggested by the formulation of
Cartan’s equations, will be exhibited. It will be shown how both the source
free Yang-Mills equations and gravity coupled to the source free Yang-Mills
field, via the Einstein-Yang-Mills equations, can be formulated in terms of
type N = 2 flat generalized connections. These results provide a “universal”
conceptual framework, that of flat connections constructed from generalized
forms, within which all these equations can be placed. Finally, in order to
provide a simple contrasting example which employs a non-flat connection,
source-free Maxwell-like equations are constructed using type N = 2 forms
on a four dimensional manifold with a Lorentzian metric. The resulting
equations can be reduced, by choice of gauge, to a Proca-like equation for an
ordinary three form.
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2 GENERALIZED CONNECTION FORMS

OF TYPE N = 2

It will be helpful to think of generalized connections as extensions of ordinary

connections, as follows. Let
1
α be an ordinary (N = 0) connection 1-form

with values in the Lie algebra � of a Lie group G. Let
2

Ω denote its curvature 2-

form, so that
2

Ω = d
1
α+

1
α

1
α, and let d1 denote the covariant exterior derivative

with respect to
1
α. Define A, a � - valued generalized connection 1-form of

type N, to be the generalized extension of
1
α when

A =
1
α +

2
αi1ζ

i1 +
3
αi1i2ζ

i1ζ i2 +
4
αi1i2i3ζ

i1ζ i2ζ i3 + ... +
N+1
α i1....iNζ i1.....ζ iN .

The ordinary p-forms, 2 ≤ p ≤ N + 1, given by
2
αi1, ...,

N+1
α i1....iN take values

in �
. The curvature 2-form of A is F = dA + AA, and straightforward

computation gives

F =
2

Ω+
2
αi1k

i1+(d1
2

αi1 +2
3
αi1i2k

i2)ζ i1 +(d1
3
αi1i2 +

2
αi1

2
αi2 +3

4
αi1i2i3k

i3)ζ i1i2 + .....

Only type N = 2 forms will be considered henceforth in this paper so the
notation can be simplified a little. Let

A =α + βiζ
i + γζ12, (1)

i = 1, 2, be a generalized connection 1-form on a manifold M with values
in the Lie algebra � of a matrix Lie group G. Here α, βiand γ are � −valued
ordinary 1-, 2- and 3- forms respectively and ζ12 = ζ1ζ2. The curvature
two-form is given by

F = (Ωα + βik
i) + (dαβ1 + k2γ)ζ1 + (dαβ2 − k1γ)ζ2

+ (dαγ + β1β2 − β2β1)ζ
12, (2)

and dα denotes the covariant exterior derivative with respect to α, with the
latter interpreted as an ordinary connection one-form with curvature two-
form Ωα ≡ dα + αα. Such a convention will be followed throughout. By
considering the case when the curvature F is zero it is easy to see from Eq.
(2) that a flat connection can always be written just in terms of a one-form
and a two-form, for example as

A =α− (k1)−1(Ωα + β2k
2)ζ1 + β2ζ

2 + (k1)−1dαβ2ζ
12. (3)
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As in previous papers, gauge transformations for such connections and
curvatures may be defined to be generated by generalized zero-forms on M
taking values in a Lie group G. This is a broad notion of gauge equivalence.
The group G is determined by the semi-direct product of a Lie group G and
the abelian groups, under addition, of modules of certain ordinary differential
forms with values in the Lie algebra � of G. In the present context type
N = 2 forms and connections are being considered so, without loss of essential
generality, here g ∈ G will be assumed to be of the form g = mn, where
m = 1+µζ1+ νζ12 and n = π. Here µ and ν are, respectively, ordinary one-
and two- forms on M with values in the Lie algebra � and π is an ordinary
zero-form on M with values in the Lie group G.

[In previous papers, g ∈ G was written in the form g =π(1 +
1
πζ1 + ...) ∈

G, where π is an ordinary zero form on M with values in the Lie group G, and
1
πis a 1-form with values in the Lie algebra � , etc. However the expression
for g can always be re-written differently as the product of two zero forms on

M, as g = mn, where m = 1 + π
1
ππ−1ζ1 + ..., and n = π. Because this way

of writing g enables the transformation properties of the connection to be
expressed in a more readily recognizable form than was the case previously
it will be used here. Furthermore as far as the discussions in this paper
are concerned there is no loss in essential generality, compared with previous
work (Robinson, 2003), in assuming that the choice of basis of minus 1-forms,
( ζ1,ζ2) enables the coefficient of ζ2 in m to be set equal to zero.]

Recall that group multiplication in G is exterior multiplication and clo-
sure is ensured with this type of choice for m, that is the vanishing of the
coefficient of ζ2 . The identity is the identity in G, 1, and g−1= n−1m−1

where m−1 = 1− µζ1 − νζ12.

Under a gauge transformation generated by g, A → Â = g
−1

dg + g−1Ag,
where

Â=π−1dπ + π−1[α + (−k1µ)]π + π−1[β1 + µα + αµ− (k1)−1Ωµ − k2ν]πζ1

+ π−1[β2 + k1ν]πζ2 + π−1[γ + Dµν + αν − να− µβ2 + β2µ]πζ12. (4)

Furthermore F → F̂ = π−1m−1Fmπ where, if F =
2�

+
3�
iζ

i +
4�
ζ12,

m−1Fm=
2�

+ (
3�

1 +
2�
µ− µ

2�
)ζ1 +

3�
2ζ

2

+ (
4�

+
2�
ν − ν

2�
+

3�
2µ + µ

3�
2)ζ

12. (5)
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It should be noted that with the definition of gauge transformation used here
any connection one-form A, as in Eq. (1), is gauge equivalent to the exterior
product of a type N = 1 form with a minus one form. For example, a gauge
transformation of A generated by m, with µ = (k1)−1α and ν = −(k1)−1β2,
gives

Â = [β1 + (k1)−1k2β2 + (k1)−1Ωα + (−γ + (k1)−1dαβ2)ζ
2]ζ1. (6)

Any flat type N = 2 connection can be expressed in the form g−1dg. A
simple computation gives

g−1dg= [π−1dπ + π−1(−k1µ)π] + π−1[−(k1)−1Ωµ − k2ν]πζ1

+ k1π−1νπζ2 + π−1(dµν)πζ12, (7)

where dµ denotes the covariant exterior derivative with respect to −k1µ, so
that dµν = dν + (−k1µ)ν − ν(−k1µ), and Ωµ ≡ d(−k1µ)+ (−k1µ)(−k1µ).
It follows from Eq. (7) that the expression for the flat connection given by
Eq. (3) is equal to m−1dm where

m = 1− (k1)−1αζ1 + (k1)−1β2ζ
12. (8)

The covariant exterior derivative of a generalized p-form s is defined by
using the standard type of formula

dAs =ds + As + (−1)p+1sA,

and throughout the paper covariant exterior derivatives are denoted by d
with a sub-script indicating the connection.

A generalized zero-form p is said to be parallely-transported along a curve
in M, with tangent vector V, when V cdAp =0. When A is flat a generalized
zero-form at any point in M defines a unique parallel p-form field on M
satisfying the linear system of first order equations of parallel propagation,
dAp =0.

3 CARTAN’S STRUCTURE EQUATIONS FOR

METRIC CONNECTIONS

Recall that if θ is a n × 1 matrix of ordinary one-forms on M with entries
θa, a = 1..n, which constitutes a co-frame, then Cartan’s structure equations
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for an affine connection represented by a n×n matrix valued one-form ω are
given by

dωθ = Θ,

dω + ωω = Ωω. (9)

where Θ and Ω are the torsion and curvature two-forms. The first and
second Bianchi identities are given by

dωΘ− Ωωθ = 0,

dωΩω = 0. (10)

Now consider the case where the co-frame determines a metric of signature
(p, q) given by ds2 = ηabθ

a ⊗ θb, where ηab are constants. The metric
connection one-forms and curvature two -forms take values in so(p, q). As
is well known, Cartan’s equations for metric connections are equivalent to
equations expressed entirely in terms of so(p,q) valued forms. This can be
seen by introducing the so(p,q)-valued two- and three-forms, Σ and Ξ, with
entries in their respective n× n matrix representations given by

Σa
.b = θaθb,

Ξa
.b = Θaθb − θaΘb. (11)

The equations

dωΣ = Ξ, (12)

dω + ωω = Ωω

hold if and only if Cartan’s structure equations are satisfied and can be
regarded as the SO(p, q) version of those equations. In addition the analogue
of the first Bianchi identity is

dωΞ + ΣΩω − ΩωΣ = 0. (13)

Furthermore the connection ω is the unique Levi-Civita torsion free metric
connection when Θ vanishes, and Θ = 0 if and only if Ξ = 0.

The SO(p,q) Cartan equations can be naturally expressed in terms of
type N = 2 flat generalized connections. By using the results of Section 2,
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or by direct calculation, it is a straightforward matter to verify the following
results.

Proposition 3.1:

Let the so(p, q) valued generalized connection one-form A be given by

A = ω + Σζ1 + [−(k2)−1Ω− (k2)−1k1Σ]ζ2 − (k2)−1Ξζ12, (14)

where Σa
.b = θaθb and Ω and Ξ are, respectively, a so(p,q)-valued two-form

and three-form. Its curvature is given by

F=Ωω − Ω + [dωΣ− Ξ]ζ1 + (k2)−1[−dωΩ− k1dωΣ + k1Ξ]ζ2

+ (k2)−1[−dωΞ + ΩΣ− ΣΩ]ζ12. (15)

Hence A is flat if and only if Ω = Ωω , Ξa
.b = dωθaθb− θadωθb and the Cartan

structure equations, Eqs. (11) and (12) - and Eq. (13), are satisfied.
The next corollary follows directly from Eq. (8).
Corollary 3.1:

When A is flat A = m−1dm where

m =1− (k1)−1ωζ1 + (k1k2)−1[−Ωω − k1Σ]ζ12. (16)

Corollary 3.2:

When Ξ = 0 in Eqs. (14) and (15), and the one-forms {θa} are linearly
independent, A is flat if and only if ω is the Levi-Civita connection, with
curvature Ω, of the signature (p, q) metric ds2 = ηabθ

aθb.
By imposing restrictions on the choices of Ω and Ξ in Eqs. (14) and

(15) different types of geometries can be associated with flat connections.
The following corollary contains one example of this - Ricci flat metrics.
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Corollary 3.3:

Let (i) Ξ = 0 in Eqs. (14) and (15), (ii) Ωa
.b = 1/2Ca.c

.b.dΣ
d
.c, where Ca.c

.b.a =
Ca.b

.b.d = 0, and (iii) the one-forms {θa} be linearly independent.
Then the connection one-form A is flat if and only if ω is the Levi-Civita

connection of the Ricci-flat metric ds2 = ηabθ
aθb.

4 FLAT GENERALIZED CONNECTIONS

AND FIELD EQUATIONS IN FOUR DI-

MENSIONS

Here a source free Yang-Mills field, with internal symmetry group GI , cou-
pled to gravity through the Einstein-Yang-Mills equations will be consid-
ered. For the sake of definiteness four-metrics, ds2 = ηabθ

aθb, with ηab =
diag(1, 1, 1,−1) will be considered. The field equations, can be written in
the form

dωΣ = 0,

dα ∗
�

= 0,

dω + ωω = Ω,

dα + αα =
�

, (17)

where ω is the so(3,1)-valued Levi-Civita connection one-form, Σa
.b =θa θb,

and α is the Yang-Mills gauge potential (connection) and takes values in
the Lie algebra of GI. Here ∗

�
denotes the Hodge dual of the Yang-Mills

field (curvature) two form
�

= 1
2

� i
jabΣ

ab, and here a, b, c, d = 1− 4, and the
internal Lie algebra indices i, j = 1− dim GI . The curvature two-form Ω is
given by

Ωa
.b =

1

2
Ca

.bcdΣ
cd + 2π(TbdΣ

ad + TbcΣ
ac + Σc

.bT
a
c + Σd

.bT
a
d ), (18)

where Ca
.bcd are the components of the Weyl conformal curvature of the metric

and Tab are the components of the energy-momentum tensor of the Yang-
Mills field. The last equation is just a convenient way of writing Einstein’s
equations

Gab = 8πTab,

Tab =
1

4π
tr(FacF

.c
b −

1

4
ηab

�
cd

� cd). (19)
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These equations can be re-written in terms of a connection one-form Γ
and a two-form Υ which take values in the Lie algebra of SO(3, 1)×GI as
follows, (c.f. Robinson, 1995). Let

Γ = ω1G + 1Lα,

Υ = Σ1G + 1L ∗
�

,

Π = Ω1G + 1L
�

, (20)

where 1L and 1G respectively represent the identities in SO(3, 1) and GI .
The first two equations in Eqs. (17 ) are then equivalent to the equation

dΓΥ = 0, (21)

and the second pair of equations in Eq. (17 ) are equivalent to the equation

dΓ + ΓΓ = Π. (22)

The components of these objects may be written in an index notation as
Γα

.β ≡ Γa.i
.b.j = ωa

.bδ
i
.j + δa

.bα
i
.j, Υ

α
.β ≡ Υa.i

.b.j = Σa
.bδ

i
.j + δa

.b ∗
� i

.j , and Πα
.β ≡

Πa.i
.b.j = Ωa

.bδ
i
.j + δa

.b

� i
.j.

By comparing the Einstein-Yang-Mills field equations given by Eqs. (21)
and (22) with the equations in Section three it is clear that these equations
can be re-written in terms of a flat generalized connection one-form. Let

A = Γ + Υζ1 + [−(k2)−1Π− (k2)−1k1Υ]ζ2, (23)

where Γ ≡ ω1G +1Lα, Υ ≡ Σ1G +1L ∗ (dα+αα),and Π are respectively one-
forms and two-forms with values in the Lie algebra of SO(3, 1)×GI . Then,
since the curvature two-form F = dA + AA is given by

F = (dΓ + ΓΓ− Π) + dΓΥζ1

− (k2)−1[dΓΠ + k1dΓΥ]ζ2 + (k2)−1[ΠΥ− ΥΠ]ζ12,

the following proposition holds
Proposition 4.1:

The connection one-form A given by Eq. (23 ) is flat if and if the Einstein-
Yang-Mills equations are satisfied.

It is a straightforward matter to show that the Yang-Mills equations alone
can also be represented by a flat connection.
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Proposition 4.2:

Consider the two parameter family of connection one-forms

A =α−D−1(c2 �
+ k2 ∗

�
)ζ1 + D−1(c1 �

+ k1 ∗
�

)ζ2, (24)

where the parameters c1, c2 are chosen so that D ≡ c2k1−c1k2 is non-zero.
Since the curvature two-forms are given by

F = (dα + αα−
�

)−D−1(c2dα
�

+ k2dα ∗
�

)ζ1

+ D−1(c1dα
�

+ k1dα ∗
�

)ζ2,

the connection A is flat if and only if the one form α and the two form
�

satisfy the source-free Yang-Mills equations, dα + αα =
�

and dα ∗
�

= 0.

5 SOURCE FREE MAXWELL EQUATIONS

FOR TYPE N = 2 FORMS

In this concluding section it will be shown that the structure of the source
Maxwell-like equations for type N = 2 forms differs from the structure of the
standard Maxwell equations. This is in line with previous results for N = 1
forms (Nurowski & Robinson, 2002). It illustrates a difference between
the fields and equations considered above and those determined by non-flat
generalized connections.

The generalized source free Maxwell equations for type N = 2 forms, in
a four dimensional space-time with a Lorentzian metric, are defined to be

dF=0, (25)

d ? F = 0, (26)

where F is a generalized two-form and ?F is its Hodge dual, a generalized
zero-form.

For N > 0 all closed generalized forms are exact, hence Eq. (25) can
be solved by introducing a potential for F, a generalized one-form A with
F =dA. As usual A can be interpreted as a connection one-form with curva-

ture F and the gauge freedom A → Â = g
−1

dg + A is the one dimensional
(abelian) version of the gauge transformation given in Section two. Using
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the notation of Section two, applied to this particular potential, it follows
from Eqs. (1) and (2) that if A =α + βiζ

i + γζ12 then

F = (dα + βik
i) + (dβ1 + k2γ)ζ1 + (dβ2 − k1γ)ζ2

+ dγζ12. (27)

Using the definition of Hodge dual for generalized two-forms (Robinson,
2003)

?F= ∗ dγ + (∗dβ2 − k1 ∗ γ)ζ1 − (∗dβ1 + k2 ∗ γ)ζ2

+ (∗dα + ki ∗ βi)ζ
12. (28)

Now Eq. (26) is satisfied if and only if

d ? F=
1
χ +

2
χiζ

i +
3
χζ12, (29)

is zero, that is if and only if

1
χ ≡ d(∗dγ) + [(k1)2 + (k2)2] ∗ γ − k1 ∗ dβ2 + k2 ∗ dβ1 = 0; (30)

2
χ1 ≡ d(∗dβ2 − k1 ∗ γ)− k2(∗dα + ki ∗ βi) = 0; (31)

2
χ2 ≡ −{d(∗dβ1 + k2 ∗ γ)− k1(∗dα + ki ∗ βi)} = 0; (32)

3
χ ≡ d(∗dα + ki ∗ βi) = 0. (33)

It should be noted that Eq. (33) is satisfied whenever either Eq. (31) or
Eq. (32) is satisfied. By using the gauge freedom discussed in Section two
it is possible to choose a gauge in which α = β2 = 0. The remaining gauge
freedom then is given by gauge transformations in which, g = mn, n = π,
m = 1 + (k1)−1d(lnπ)ζ1, and under which β1 and γ remain unchanged. In
this gauge it follows from Eq. (31) that

β1 = (k2)
−1δγ, (34)

where δ = ∗d∗ is the co-differential operator. When this expression for
β1 is used Eq. (32) can be seen to satisfied whenever Eq. (30) is; and the
latter, now the only equation remaining to be solved, becomes the Proca-type
equation

∆γ + [(k1)2 + (k2)2]γ = 0, (35)
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where ∆ = dδ + δd is the Laplace operator for three-forms. Consequently,
in this gauge the potential is given by A =(k2)

−1δγζ1 + γζ12, and it satisfies
the field equations, Eqs. (25) and (26), if and only if Eq. (35) is satisfied.

The above calculations could be extended, for example to straightfor-
wardly generalize the formalism of higher-order gauge theories (Alvarez &
Olive, 2003) in n dimensions.

I would like to thank the Theoretical Physics Group at Imperial College
for its hospitality while this research was being carried out.
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