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Abstract:
Generalized differential forms of different types are defined and their al-

gebra and calculus are discussed. Complex generalized p-forms, a particular
class of type two generalized forms, are considered in detail. It is shown that
Einstein’s vacuum field equations for Lorentzian four-metrics are satisfied if
and only if a complex generalized 1-form on the bundle of two component
spinors is closed. A similar result for half-flat and anti self-dual holomorphic
four-metrics is also presented.
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I. INTRODUCTION

Recently the algebra and calculus of generalized differential forms have
been developed and examples of their physical application have been presented1,2.
This paper contains a self-contained extension of this work and an applica-
tion of it to Einstein’s vacuum field equations. Earlier work concentrated on
the presentation of generalized forms corresponding to ordered pairs of of or-
dinary p- and p+1- forms. In this paper, a broader framework is introduced
which includes those forms as a particular case. This new framework is
constructed by introducing the concept of generalized p-forms of type N (N
a non-negative integer) on an n-dimensional manifold M. Ordinary p-forms
become generalized forms of type N = 0, and the generalized forms corre-
sponding to ordered pairs become generalized forms of type N = 1. Forms
of type N can be represented by 2N−tuples of ordinary differential forms,
where −N ≤ p ≤ n, and satisfy an exterior algebra and calculus which is
a direct generalization of that satisfied by type N = 0 and N = 1 forms.
As in the case of type 1 forms, forms of negative degree are admitted when
N is positive3,4. The new framework naturally extends the one presented for
type N = 1 forms in Refs. 1 and 2. It encompasses the extension briefly
mentioned in Ref. 1.

In Sec. II the algebra and calculus of generalized differential forms of
type N are defined. The definitions are presented in a recursive fashion
so that they are similar, in general form, to the definitions previously given
for type N = 1 generalized forms. Three different representations of general-
ized forms and their algebra and calculus are presented, including a matrix
representation. While each of these representations has its uses, the main
representation of type N forms used throughout the paper will be in terms
of 2N−tuples. Local definitions of generalized connections are presented,
and on manifolds with metrics the Hodge (star) operator and duality, the
co-differential and Laplacian for type N forms are defined. These defini-
tions are the standard ones for N = 0 (that is ordinary) forms5, and agree
with the ones given in previous papers for N = 1 forms1,2. Forms of type
N can always be regarded as special cases of forms of type Ń where N ≤Ń
but this may not always be the most efficient point of view. In Sec. III the
basic algebra and calculus for the particular case of type N = 2 generalized
forms are presented in more detail and in terms of ordered quadruples of
ordinary forms. The formulae here include results needed in the next sec-
tion. They also illustrate in detail the difference between results for N = 2
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forms and results for N = 1 forms obtained previously. The fourth sec-
tion is devoted to a discussion of Lorentzian four-metrics and the condition
of Ricci flatness. First the representation of the metric geometry via the
Cartan structure equations for ordinary forms, including a two component
spinor version, is reviewed. Then, by using that formalism, the condition
for a four-metric to be Ricci flat is formulated as the requirement that a
generalized one-form, defined on the bundle of two component spinors over
a four dimensional manifold, be closed. Although the focus is on Lorentzian
four-metrics it is clear that a similar result hold for four-metrics of all signa-
tures. Half-flat four-metrics are also considered. The condition for a metric
to be half-flat is re-formulated as the requirement that a generalized 1-form
to be closed. The holomorphic anti-self dual case is considered explicitly but
Riemannian and ultra-hyperbolic four-metrics can be dealt with in a similar
way. These results can be viewed as giving a geometrical interpretation of
Ricci flatness for four-metrics. They also provide an illustration of the rela-
tionship between half-flat metrics and Ricci flat, but not necessarily half-flat,
metrics.

Most of the considerations in this paper are local in nature. Emphasis
is placed on the algebra, calculus and local geometry rather than the global
geometry. The letters over the forms indicate the degrees of the forms and
whenever these degrees are obvious they will be omitted. By standard
convention, ordinary p-forms (that is of type N = 0) with p negative are
zero. Where it is helpful a subscript will be used to denote the type of
the form. Usually bold Latin letters will be used for generalized forms and
normal Greek letters for ordinary forms.

II. GENERALIZED FORMS OF DIFFERENT TYPES

In this section generalized forms of different types will be defined and
their exterior algebra and calculus will be discussed. The properties of
generalized p-forms can be defined recursively (on N), using definitions which
are formally similar to those for the special case, where N = 1, discussed in
Refs. 1 and 2. Here, using the terminology of Ref. 1, the left exterior
product and left generalized derivative will always be used. While a few
examples are given in this section a more extensive collection is presented in
Sec. III.

The module of generalized p-forms of type N = 0 is defined to be the
module of ordinary p-forms on M, Λp

0, with the usual exterior product and
exterior derivative. Then the module of generalized p-forms of type N , Λp

N ,
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is defined as follows. For N ≥ 1, a generalized p-form of type N ,
p
aN ∈ Λp

N ,is
defined to be ordered pairs of generalized p- and p+1-forms of type N − 1

p
aN ≡ (

p
aN−1,

p+1
a N−1), (1)

where N is any integer greater than or equal to one.
Hence forms of type N = 1 are ordered pairs of ordinary p- and p+1-

forms forms, for example
p
a1 = (

p
α,

p+1
α ) ∈ Λp

0 ×Λp+1
0 , as in Refs. 1 and

2. Forms of type N = 2 are ordered quadruples of ordinary p-, p+1-

,p+1-and p+2-forms. For example, let
p
a2 = (

p
a1,

p+1
a 1) where

p
a1 = (

p
α,

p+1
α ),

p+1
a 1 = (

p+1

6 α ,
p+2
α ), then

p
a2 ∈ Λp

2 is given by

p
a2 = (

p
α,

p+1
α ,

p+1

6 α ,
p+2
α ) ∈ Λp

0 × Λp+1
0 × Λp+1

0 × Λp+2
0 . (2)

More generally, a p-form of type N will correspond to an ordered set of 2N

ordinary q-forms, with −N ≤ p ≤ q
�

p + N . Non-zero entries occur in the
2N -tuple only when 0 ≤ q ≤ n since, as mentioned above, any ordinary form,
q
α,with q negative is zero. Forms of type N1 are naturally included in forms
of type N2 when N1 < N2.

The exterior product is extended from ordinary forms to forms of type

N ≥ 1 as follows. Let
p
aN ≡ (

p
aN−1,

p+1
a N−1) and

q

bN ≡ (
q

bN−1,
q+1

b N−1) be a

p-form and a q-form of type N ≥ 1. Then the exterior product of
p
aNand

q

bN is the p+q-form of type N defined (recursively) by

p
aN ∧

q

bN = (
p
aN−1 ∧

q

bN−1,
p
aN−1 ∧

q+1

b N−1 + (−1)qp+1
a N−1 ∧

q

bN−1). (3)

The exterior product satisfies all the usual rules, in particular
p
aN ∧

q

bN =

(−1)pq
p

bN ∧
q
aN . Furthermore, it follows that when p + q < −N, the exterior

product is zero.
The exterior derivative, d : Λp

N → Λp+1
N , is defined in the usual way for

N = 0 forms, and when N ≥ 1 by

d
p
aN = (d

p
aN−1 + (−1)p+1kN

p+1
a N−1, d

p+1
a N−1), (4)

where kN is constant.
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When d
p
aN is expressed in terms of ordinary forms it contains the con-

stants k1, k2, ...kN . These will all be assumed to be non-zero unless it is
stated otherwise. This exterior derivative also satisfies all the usual rules,

in particular d2 = 0, and d(
p
aN ∧

q

bN) = d
p
aN ∧

q

bN + (−1)p
p
aN ∧ d

q

bN .
The above representation of the algebra and calculus of generalized forms

will be the main one used in this paper. However it is appropriate to note
here two alternative representations which can be useful. In the first of
these type N forms of degree minus one, ζ1,....ζN , which are required to
satisfy all the usual rules of exterior algebra and calculus, together with the
two conditions

ζ1 ∧ .... ∧ ζN 6= 0, dζI = kI, I = 1...N, (5)

are introduced.1 Then a generalized form of type N ,
p
aN = (

p
aN−1,

p+1
a N−1),

can be identified with

p
aN =

p
aN−1 +

p+1
a N−1 ∧ ζN , (6)

and it follows that the exterior product and derivative agree with Eqs. (3)
and (4). For example, it follows from Eq. (5) that

d
p
aN = d

p
aN−1 + (−1)p+1kN

p+1
a N−1 + d

p+1
a N−1 ∧ ζN . (7)

The recursive use of this identification can be illustrated by using the example

of an N = 2 form given above. In this case
p
a2 = (

p
α,

p+1
α ,

p+1

6 α ,
p+2
α ) is identified

with
p
a2 =

p

α+
p+1
α ∧ ζ1+

p+1

6 α ∧ζ2 +
p+2
α ∧ ζ1 ∧ ζ2. It should be noted that while

the identification continues to be unambiguous when N ≥ 3 the relationship
between the ordering of the forms in the two types of representations is not
as simple as it is in the N ≤ 2 cases.

The second of the alternative representation is in terms of matrix valued

forms and is again defined recursively. Here the generalized form
p
aN =

(
p
aN−1,

p+1
a N−1) is identified with a 2×2 matrix, [

p
aN ], with entries that are

forms of type N − 1,

[
p
aN ] =

[

p
aN−1

p+1
a N−1

0 (−1)p
p
aN−1

]

. (8)
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Exterior multiplication of generalized forms
p
aNand

q

bN ,as in Eq. (3), corre-

sponds to matrix multiplication of [
p
aN ] and [

q

bN ]. The matrix representation
of the exterior derivative, given by Eq. (4), can be identified by using the
2×2 matrices

S =

[

1 0
0 −1

]

, KN =

[

0 0
kN 0

]

,

and the bracket, {A, B}r, of 2×2 matrices defined by

{A, B}r = AB + (−1)rBA.

Then the matrix corresponding to d
p
aN is given by

[d
p
aN ] = Sd[

p
aN ] + {KN , [

p
aN ]}p+1. (9)

Using the definitions recursively it follows that a generalized form of type
N is identified with a 2N × 2N matrix with entries which are ordinary forms.

For example if
p
a2 = (

p
α,

p+1
α ,

p+1

6 α ,
p+2
α ), as above, then the 4×4 matrix repre-

sentation of
p
a2 is given by

[
p
a2] =















p
α

p+1
α

p+1

6 α
p+2
α

0 (−1)p
p
α 0 (−1)p+1

p+1

6 α

0 0 (−1)p p
α (−1)pp+1

α

0 0 0
p
α















. (10)

The Poincaré lemma for generalized forms of type N
�

1 can be obtained
by straightforward calculation.

Theorem 1: Let
p
aN = (

p
aN−1,

p+1
a N−1),with N

�
1, be non-zero and closed,

so that d
p
aN = 0. Then

(a) d
−N
aN = 0 if and only if kI = 0 for all I, 1 ≤ I ≤ N, and

−N
aN =

(0, ......, 0, c) where c is a non-zero constant;

(b) if p≥ −N + 1, d
p

aN = 0 if and only if either
p

aN is exact or kI = 0 for
all I, 1 ≤ I ≤ N , and all the ordinary forms in the 2N -tuple are closed.

(c) When kN is non-zero, d
p

aN = 0 if and only if
p
aN is exact.

Furthermore,
p+1
a N−1 = (−1)pk−1

N d
p
aN−1and

p
aN = d

p−1

b Nwhere
p−1

b N =

(0, (−1)pk−1
N

p
aN−1)+

p−1
cN , for any closed form

p−1
cN .
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Hence the de Rham cohomology determined by generalized forms is trivial
unless all the constant k’s are zero in which case the standard de Rham
cohomology applies. These ideas can be straightforwardly extended to other
differential operators. For example, suppose M is a complex manifold and ∂
and ∂̄ are the usual Dolbeault differential operators on ordinary differential
forms. These operators can be extended to operators acting on generalized
forms by, for example, defining

∂ζI = lI , ∂̄ζI = mI (11)

lI + mI = kI , I = 1...N,

where lI and mI are constants, and replacing d and kN in Eq.(5) by ∂ and
lN (respectively ∂̄ and mN) in the obvious way. The nature of the Dolbeault
cohomology determined by generalized forms, and the cohomology associ-
ated with the real operator dc = i(∂̄ − ∂) will clearly be determined by the
vanishing or non-vanishing of the constants mI and mI − lI .

Let V be a vector field tangent to M. Then the inner product of V with

a generalized p-form
p
aN ≡ (

p
aN−1,

p+1
a N−1) is defined in the usual way for

N = 0 forms. For N > 0 it is defined to be zero if p= −N and if p> −N it
is defined to be the generalized (p-1)- form

V c
p
aN ≡ (V c

p
aN−1, V c

p+1
a N−1). (12)

The Lie derivative of
p
aN is defined to be the p-form

LV

p
aN ≡ V cd

p
aN + d(V c

p
aN). (13)

It follows from this definition that

LV

p
aN = (LV

p
aN−1, LV

p+1
a N−1). (14)

Let G be a Lie group and let G the Lie algebra of G. Generalized G-
valued connection 1-forms and curvature 2-forms of type N are defined in
a similar manner to ordinary connection 1-forms and curvature 2-forms.1,6

However the ordinary forms are replaced by generalized type N forms. Here
only the local definition of curvature is given. The appropriate geometrical
setting for a global formulation needs further investigation. Let AN be a
generalized connection 1-form, of type N, with values in G. The curvature
2-form of this connection is defined by the usual type of formula to be

FN=dAN+
1

2
[AN ,AN ]. (15)
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Hence if the commutation relations of the Lie algebra G are given by

[Xj, Xk] = Ci
jkXi,

and if AN = Ai
NXi, where Ai

N are generalized 1-forms, then if FN= Fi
NXi,

Fi
N = dAi

N +
1

2
Ci

jkA
j
N ∧Ak

N . (16)

A generalized connection, AN , determines a generalized covariant exterior

derivative,D. Let
p

bN be any G-valued generalized p-form of type N, then

D
p

bN = d
p

bN + [AN ,
p

bN ]. (17)

As an example of a generalized connection, consider affine generalized
connections with structure group G= IGL(n) and Lie algebra G. The gener-
ators, Xb

a, of G satisfy the commutation relations

[Xa, Xb] = 0, [Xa
b , Xc] = δa

c Xb, [X
a
b , Xc

d] = (δa
dX

c
b − δc

bX
a
d ).

The generalized connection 1-form AN and curvature 2-form FN are given
by

AN = ea
NXa + Γa

NbX
b
a;FN = Ta

NXa + Fa
NbX

b
a, (18)

where ea
N is a moving co-frame of generalized 1-forms on M, and Γa

Nb and
the pair Ta

N ,Fa
Nb are respectively generalized 1-forms and 2-forms on M.

The lower case Latin indices range and sum over 1 to n. Computing the
generalized curvature, as above, gives the Cartan structure equations. The
first and second generalized Cartan structure equations are

Ta
N = dea

N − eb
N ∧ Γa

Nb;F
a
Nb = dΓa

Nb + Γa
Nc ∧ Γc

Nb, (19)

where Ta
N is the generalized torsion and Fa

Nb is the generalized curvature of
the generalized affine connection Γa

Nb.
Next consider an oriented manifold M with a metric g of signature (r,n-r)

so that a Hodge star operator, duality, co-differential and Laplacian etc for

generalized forms,
p
aN = (

p
aN−1,

p+1
a N−1), of type N can be defined. The sign

conventions of Ref. 2 are again used so the definitions and results below agree
with the ones in that reference when N = 0 and N = 1. The definitions are
again recursive in nature.
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The (Hodge) star operator,? : Λp
N → Λn−p−N

N , and dual for generalized

forms are defined as follows. For N = 0, ?
p
a0 ≡ ∗

p
α, where ∗ denotes the usual

Hodge star operator on ordinary forms, and for N ≥ 1,

p
aN 7→ ?

p
aN ≡ ([−1]n+p+N ?

p+1
aN−1, ?

p
aN−1). (20)

This definition gives, as the dual to a type N generalized p-form, a generalized

(n-p-N)-form. It follows that if
p
s = (−1)np+p+n−r, then

? ?
p
aN =

p
s(−1)Np p

aN ≡ λ2
N

p
aN , (21)

where λN depends on N and, as usual, n, p and the signature of the met-
ric. The possible eigenvalues of ? are ±λN , where in fact λN = 1 or i.
This agrees with the standard result for ordinary forms and the previously
obtained expression for N=1 forms. With the above sign conventions, a

generalized p-form is said to be self-dual if ?
p
aN = λN

p
aN , and anti self-dual

if ?
p

aN = −λN

p
aN . It is straightforward to see that necessary conditions for

a generalized p-form to be either self-dual or anti self-dual are that when N
is zero or an even integer, the dimension of M, n, must be be even, when N

is odd n must be odd, and that p = n−N
2.

. In fact ?
p
aN =

+
−λN

p
aN if and only

if
p

aN = (
n−N

2

aN−1,±λ−1
N ?

n−N

2

aN−1).
Now

p
aN ∧

q

?bN = ([−1]n+q+N p
aN−1 ∧ ?

q+1

bN−1,
p

aN−1 ∧ ?
q

bN−1 +
p+1

aN−1 ∧ ?
q+1

bN−1).

The simplest definition of a symmetric inner product of two generalized p-

forms
p
aN and

p

bN is given by the usual expression for ordinary forms when

N=0,

〈

p
α,

p

β

〉

, and recursively, when N≥ 1, by

〈

p
aN ,

p

bN

〉

≡

〈

p
aN−1,

p

bN−1

〉

+

〈

p+1
a N−1,

p+1

bN−1

〉

. (22)

This inner product is positive definite for a Riemannian manifold and can be
used in the construction of Lagrangians. (As was noted in Ref. 2, alternative
definitions may also be useful.)
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A co-differential operator δ : Λp
N → Λp−1

N , by
p
aN 7→ δ

p
aN is defined recur-

sively as follows. If
p
σ = (−1)np−r+1, then

δ
p
aN = (−1)N(p+1) p

σ ? d ?
p

aN . (23)

This definition agrees with the definition for ordinary forms, and the previ-
ously presented definition for N = 1 forms, and implies that

δ
p
aN = (δ

p
aN−1, δ

p+1
aN−1 + (−1)pkN

p
aN−1). (24)

From these definitions it follows that δ2 = 0,and δ
−N
aN = 0. If

p
aN is co-closed,

that is δ
p

aN = 0, then in a result analogous to the Poincaré lemma above, it
is co-exact, that is it is the co-differential of a generalized (p+1)-form.

Theorem 2: If
p
aN = (

p
aN−1,

p+1
a N−1) and δ

p
aN = 0, then if −N ≤ p ≤

n − 1, and kN is non-zero,
p
aN−1 = (−1)p+1k−1

N δ
p+1
a N−1and

p
aN = δ

p+1

bN ,where
p+1

bN = ((−1)p+1k−1
N

p+1
aN−1, 0)+

p+1
cN , for any

p+1
cN which is co-closed. Furthermore,

δ
n

aN = 0 if and only if
n

aN = 0. Any type N form, with p=-N, is both co-
closed and co-exact.

When M is compact without boundary, the condition, 〈daN ,bN〉= 〈aN , δbN〉 ,
for this co-differential operator on generalized forms to be the adjoint of d,
holds.

A Laplacian for generalized forms, 4 : Λp
N → Λp

N , is defined to be 4 =
dδ + δd.

Computation, with the choice of signs made in this paper, gives the simple
expression, in agreement with the previously presented N=0 and N=1 cases,

4
p

aN = (4
p

aN−1 + k2
N

p
aN−1,4

p+1
aN−1 + k2

N

p+1
aN−1). (25)

It follows from this that
p
aN is a harmonic generalized form, that is 4

p
aN = 0,

if and only if 4
p

aN−1 + k2
N

p
aN−1 = 0, and 4

p+1
aN−1 + k2

N

p+1
aN−1 = 0. That is, a

generalized form is harmonic only when its constituent ordinary forms satisfy
a Klein-Gordon type of equation with a “mass squared” term given by k2

N .
The choices of signs in the above definitions have been made in order to

make generalized forms eigenforms of the operator ??, to give a definition
of δ which was simply related to the definition for ordinary forms and to
ensure that the Laplacian on generalized forms was computable in terms of
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the Laplacian, not some other second order differential operator, acting on
ordinary forms.

III. GENERALIZED FORMS OF TYPE N=2

In this section aspects of the algebra and calculus of generalized forms of
type 2 will be considered in more detail and further applications of the results
in Sec. II will be presented. Henceforth the generalized forms considered
will be mainly of type N = 2, so the subscript N = 2 will be omitted in the
remainder of the paper. As will be seen there is a loose analogy between
going from real numbers to complex numbers to quaternions and going from
ordinary forms to forms of type 1 and forms of type 2.

A. Basic algebra and calculus

As was noted in Sec. II, a generalized p-form of type 2,
p
a, (-2≤ p ≤ n),

is an ordered quadruple of ordinary p-, p+1-, p+1- and p+2- forms; that is

since
p
a is an ordered pair of the type 1 forms

p
a1 = (

p
α,

p+1
α ) and

p+1
a1 = (

p+1

6 α ,
p+2
α )

p
a ≡ (

p
α,

p+1
α ,

p+1

6 α ,
p+2
α ).

A minus two-form is an ordered quadruple
−2
a = (0, 0, 0,

0
α), where

0
α is a

function on M, and a minus one-form is an ordered quadruple
−1
a = (0,

0
α,

0

6 α

,
1
α), where

1
α is an ordinary 1-form on M and

0
α,

0

6 α are functions on M. A

generalized p-form of type 2, given by a quadruple (
p
α, 0, 0, 0), will be iden-

tified with the ordinary p-form
p
α. Consequently a function on M,

0
α, will

be identified with the generalized 0-form (
0
α, 0, 0, 0) while the quadruples

(0,
0
α, 0, 0), (0, 0,

0
α, 0) and (0, 0, 0,

0
α) respectively define two linearly indepen-

dent generalized minus one-forms and a minus two-form. Just as an ordi-

nary p-form
p
α is naturally included in the generalized p-forms of type 2 as

(
p
α, 0, 0, 0), a generalized p-form of type 1, (

p
α,

p+1
α ), can be naturally included

in the generalized p-forms of type 2 as (
p
α,

p+1
α , 0, 0).

If
p
a ≡ (

p
α,

p+1
α ,

p+1

6 α ,
p+2
α ) and

q

b ≡ (
q

β,
q+1

β ,
q+1

6 β ,
q+2

β ), then the generalized
exterior product and the generalized exterior derivative, d, defined in section
two, are given in terms of ordinary forms by :
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p
a ∧

q

b =
p+q
c ≡ (

p+q
γ ,

p+q+1
γ ,

p+q+1

6 γ ,
p+q+2

γ ),

p+q
γ =

p
α ∧

q

β, (26)

p+q+1
γ =

p
α ∧

q+1

β + (−1)qp+1
α ∧

q

β,
p+q+1

6 γ =
p
α∧

q+1

6 β +(−1)q
p+1

6 α ∧
q

β,

p+q+2
γ =

p
α ∧

q+2

β + (−1)q+1p+1
α ∧

q+1

6 β +(−1)q
p+1

6 α ∧
q+1

β + (−1)qp+2
α ∧

q

β,

and

d
p
a ≡

p+1
c ≡ (

p+1
γ ,

p+2
γ ,

p+2

6 γ ,
p+3
γ ),

p+1
γ = d

p
α + (−1)p+1k1

p+1
α + (−1)p+1k2

p+1

6 α ,
p+2
γ = d

p+1
α + (−1)p+1k2

p+2
α , (27)

p+2

6 γ = d
p+1

6 α +(−1)pk1
p+2
α ,

p+3
γ = d

p+2
α .

The ordinary forms (and manifold) may be real or complex and a bar over
ordinary forms denotes the usual complex conjugate.

The conjugate of
p
a, denoted

p

ā , is defined to be

(
p

ᾱ,
p+1
¯6 α ,

p+1
ᾱ ,−

p+2
ᾱ ). (28)

The generalized form is said to be self-conjugate,
p
a =

p

ā, when
p
α is real,

p+1

6 α is

the complex conjugate of
p+1
α and

p+2
α is a purely imaginary ordinary 1-form.

(Hence if
p
a =

p
α +

p+1
α ∧ ζ+

p+1

6 α ∧ζ̄ +
p+2
α ∧ ζ ∧ ζ̄, with dζ = k, dζ̄ = k̄ the

conjugate is just the obvious complex conjugate.)
The Poincare lemma of Sec. II can be written in the following way for

type 2 forms.

Proposition 1: If
p
a= (

p
α,

p+1
α ,

p+1

6 α ,
p+2
α ) is closed, so that d

p
a = 0, then

(a) (−1)pd
p
α =k1

p+1
α + k2

p+1

6 α ,

12



(b)
p
a is exact, and

p
a = d

p−1

b = d
p−1
c , where

p−1

b = (−1)pk−1
2 (0, 0,

p
α,

p+1
α ),and

p−1
c = (−1)pk−1

1 (0,
p
α, 0,−

p+1

6 α ).
The second equality in (b) illustrates a consequence of the freedom to

add the exterior derivative of a complex generalized (p-2)-form to
p−1

b or
p−1
c.

If
p
a is self-conjugate then

p−1

b is the conjugate of
p−1
c .

B. Matrix Lie groups

Next consider Lie groups and Lie algebras, for simplicity matrix Lie
groups. In the present context, and following Ref. 1, it is natural to asso-
ciate with a Lie group G the semi-direct product of G and Lie algebra-valued
forms (viewed as the direct product of additive abelian groups). Define the
(associated) Lie group G by

G = {a | a = α(1,
1

A,
1

6 A,
2

A)}, (29)

α(1,
1

A,
1

6 A,
2

A) ≡ (α, 0, 0, 0) ∧ (1,
1

A,
1

6 A,
2

A) = (α, αA, α
1

6 A, α
2

A),

where a is a complex generalized 0-form, α belongs to the Lie group G, with

identity 1, and
1

A,
1

6 A,
2

A are ordinary forms with values in the (matrix) Lie
algebra of G ( or more generally H, where G is a sub-group of H).

The product of two elements of G, a = α(1,
1

A,
1

6 A,
2

A)) and b = β(1,
1

B,
1

6 B

,
2

B) is given by the above rules for exterior multiplication, and is c = a ∧ b =

αβ(1,
1

C,
1

6 C,
2

C), where

1

C =
1

B + β−1
1

Aβ,
1

6 C =
1

6 B+β−1
1

6 A β,
2

C =
2

B + β−1
2

Aβ +
2

L, (30)

where
2

L = β−1
1

6 A β ∧
1

B − β−1
1

Aβ∧
1

6 B.

Here, in order to ensure that the ordinary forms take values in the Lie algebra

of G, it is henceforth assumed that
1

6 A= c
1

A,
1

6 B= c
1

B, where c equals one if

necessary. Hence in the following,
2

L = 0.

13



The inverse of a is a−1 = α−1(1,−α
1

Aα−1,−cα
1

Aα−1,−α
2

Aα−1) and the
identity is (1, 0, 0, 0). Left fundamental 1-forms, denoted l, are formally
defined by

l= a−1 ∧ da = (
1

λ,
2

λ,
2

6 λ,
3

λ),
1

λ = α−1dα− (k1 + ck2)
1

A,
2

λ = d
1

A− (k1 + ck2)
1

A ∧
1

A− k2

2

A + α−1dα ∧
1

A +
1

A ∧ α−1dα, (31)

2

6 λ = c(d
1

A− (k1 + ck2)
1

A ∧
1

A) + k1

2

A + c(α−1dα ∧
1

A +
1

A∧α−1dα) + dc ∧
1

A,

3

λ = d
2

A + (k1 + ck2)
2

(A ∧
1

A−
1

A ∧
2

A) + α−1dα ∧
2

A−
2

A ∧ α−1dα + dc ∧
1

A ∧
1

A,

and l satisfies the Maurer-Cartan equation

dl + l ∧ l =0. (32)

In the special case where α = 1, k1 + ck2 = −1, and c is constant,

l = a−1 ∧ da = (
1

A, F − k2

2

A, c[F + c−1k1

2

A], D
2

A), (33)

where here,

F ≡ d
1

A +
1

A ∧
1

A,

D
2

A ≡ d
2

A +
1

A ∧
2

A−
2

A ∧
1

A. (34)

C. Connections

The following is an outline of the basic formulae for type 2 connections
and curvature. As in Sec.II, a discussion of connections in terms of bundles
will be avoided here by working locally with type N = 2 forms on M . Let
the generalized connection and curvature forms on M be given by Ai =

(
1

αi,
2

αi,
2

6 αi,
3

αi),Fi = (
2

� i,
3

� i,
3

6
� i,

4
� i). Then it follows from Eqs. (18) and

14



(19) that

2
� i = d

1

αi +
1

2
Ci

jk

1

αj
1

∧αk +k1

2

αi + k2

2

6 αi,

3
� i = D

2

αi + k2

3

αi,
3

6
� i = D

2

6 αi −k1

3

αi, (35)
4

� i = D
3

αi + Ci
jk

2

αj∧
2

6 αk .

Here D denotes the (formal) covariant exterior derivative of a G-valued or-

dinary differential form with respect to the ordinary G-valued 1-form
1

αi;

D
p

βi ≡ d
p

βi + Ci
jk

1

αj ∧
p

βk.

Generalized gauge transformations, following Ref.1, are determined by
generalized 0-forms on M with values in the Lie group G, as above. The
gauge transformations determined by, a, an element of G, as in Eq. (29),
are given by the standard formulae

A → (a−1)da + (a−1)Aa,

F → (a−1)Fa. (36)

It should be noted, for example, that although it appears in the above expres-

sions as if
1
α in the above equations can be regarded as a connection 1-form,

it does not necessarily transform, under generalized gauge transformations
in the same way as an ordinary connection transforms under ordinary gauge
transformations. Consequently the appropriate non-local geometrical for-
mulation and application requires further investigation, possibly along lines
similar to those referred to and discussed in, for example, Ref. 7.

Any ordinary connection
1
α can determine flat (zero curvature) generalized

connections. In this flat case it follows from Eq. (35) that the curvature

of the connection
1
α is given by f i = −(k1

2

αi + k2

2

6 αi). Further reference

to Eq. (35), in the flat case, shows that the 2-forms
2

αi (respectively
2

6 αi=

− k−1
2 (f i − k1

2

αi)) determine the 3-forms
3

αi which automatically satisfies

15



the fourth equation. Eq. (33) gives an alternative representation of a flat
generalized connection.

D. Metric geometries, the co-differential and Laplacian

When M has a metric the dual of
p
a is the n-p-2 form given by

?
p
a ≡ (∗

p+2
α , (−1)n+p∗

p+1

6 α , (−1)n+p+1 ∗
p+1
α , ∗

p
α) (37)

If the dimension of M is even type 2 forms may be self-dual, or anti-self
dual, when p = 1

2
(n− 2). Such forms are given by

p
a ≡ (

p
α,

p+1
α ,±λ−1 ∗

p+1
α ,±λ−1 ∗

p
α),

λ2 = sgn(det g).

For example, N = 2 self/anti self-dual forms on four manifolds are deter-
mined by a pair of 1-forms and 2-forms (or any 1-form of type N = 1).

The co-differential is given by

δ
p
a = (δ

p
α, δ

p+1
α +(−1)pk1

p
α, δ

p+1

6 α +(−1)pk2
p
α, δ

p+2
α +(−1)p+1k1

p+1

6 α +(−1)pk2
p+1
α ).

(38)
In the case of generalized forms of type 2, Theorem 2 implies the following.

Proposition 2: When k2 is non-zero and the generalized form
p
a is co-

closed it must have the form

p
a = ((−1)p+1k−1

2 δ
p+1

6 α , (−1)p+1k−1
2 δ

p+2
α + k−1

2 k1

p+1

6 α ,
p+1

6 α ,
p+2
α ) (39)

and
p
a = δ

p+1
c where

p+1
c may be chosen to be

p+1
c = ((−1)p+1k−1

2

p+1

6 α , (−1)p+1k−1
2

p+2
α , 0, 0). (40)

From Eq. (22), the inner product is given by

〈

p
a,

p

b

〉

=

〈

p
α,

p

β

〉

+

〈

p+1
α ,

p+1

β

〉

+

〈

p+1

6 α ,
p+1

6 β

〉

+

〈

p+2
α ,

p+2

β

〉

.

The Laplacian of
p
a is given by

∆
p
a = (∆

p
α + c

p
α, ∆

p+1
α + c

p+1
α , ∆

p+1

6 α +c
p+1

6 α , ∆
p+2
α + c

p+2
α ), (41)
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where c = k2
1 + k2

2 . Hence, unlike the case for N = 1 forms in Ref. 2, the
“mass” term c can be zero even if both (complex) k1 and k2 are non-zero.

IV. LORENTZIAN METRICS AND EINSTEIN’S EQUATIONS

The aim of this section is to consider Einstein’s vacuum field equations on
a four-manifold M. In order to fix notation, a standard formulation, which in-
cludes the use of 2-component spinors, of the Cartan moving frame approach
to four-metrics will be reviewed. Next a complex generalized one form ,
E, will be constructed on S, the total space of the bundle of two-component
spinors over a four- manifold M with four-metric g. It will be shown that
E is closed if and only if g is Ricci flat. Primary attention will be paid to
Lorentzian four-metrics although similar results apply straightforwardly to
other signatures and holomorphic four-metrics. Once again everything is
local.

First, the Cartan approach to metrics can be summarized as follows. Let
θa be a basis of ordinary 1-forms, a Cartan co-frame for g, so that the line
element for g is given by

ds2 = ηabθ
a ⊗ θb (42)

where, for 4-metrics

ηab =

[

0 εAB

−εAB 0

]

, and εAB =

[

0 1
−1 0

]

,

so that
ds2 = θ1 ⊗ θ4 + θ4 ⊗ θ1 − θ2 ⊗ θ3 − θ3 ⊗ θ2. (43)

In this section lower case Latin indices sum and range over 1-4. Upper
case Latin indices sum and range over 0-1 and, as will be shown below, will
be able to be interpreted as two-component spinor indices. Conventions
include the standard two component spinor conventions8−10.

The orientation is such that, in the case of Lorentzian four-metrics, where
θ1 and θ4 are real and θ2 is the complex conjugate of θ3, the volume element
is given by, V = iθ1 ∧ θ2 ∧ θ3 ∧ θ4, and the structure group is S0(1,3) which
is isomorphic to SL(2,C)/

�
2.

The Cartan structure equations are given by

Dθa ≡ dθa − θb ∧ ωa
b = 0,

ωab + ωba = 0, (44)

dωa
b + ωa

c ∧ ωc
b = Ωa

b = −
1

2
Ra

bcdθ
c ∧ θd,

17



where ωa
b denotes the Levi-Civita connection 1-form, and Ra

bcd are the com-
ponents of its curvature 2-form Ωa

b . Here, for any ordinary form the covariant
exterior derivative is given by

Dαa = dαa + ωa
b∧α

b, (45)

and the second covariant exterior derivative satisfies

D2αa = αb ∧ Ωa
b.

The connection and curvature forms, which take values in the Lie algebra
of the structure group, can be written as the sum of their self-dual and anti-
self-dual parts on the algebra indices, +ωa

b ,
− ωa

b ,
+ Ωa

b ,
− Ωa

b respectively. Here,
*+Ωa

b = i+Ωa
b , *−Ωa

b = −i−Ωa
b . In 4× 4 matrix form

+ωa
b =

[

ω̄0′
0′1 ω̄0′

1′1
ω̄1′

0′1 −ω̄0′
0′1

]

,− ωa
b =

[

ωA
B 0
0 ωA

B

]

, (46)

where 1 denotes the unit 2 × 2 matrix, ω̄0′
0′, ω̄

0′
1′, ω̄1′

0′ denote the independent
components of +ωa

b , the trace of the 2× 2 matrix
(

ωA
B

)

is zero and its entries

are the complex conjugates of ω̄A′

B′ . Other self-dual and anti self-dual objects
can be written similarly, for instance,

−Ωa
b =

[

ΩA
B 0
0 ΩA

B

]

,

ΩA
B = dωA

B + ωA
C ∧ ωC

B . (47)

In the case of Lorentzian four-metrics the self-dual connection and cur-
vature are the complex conjugates of the anti-self dual connection and cur-
vature and take (complex conjugate) values in the Lie algebras sl(2,C)R and
sl(2,C)L.

The two-component spinor approach to the Cartan equations for 4-metrics
can be summarized, using notation which is compatible with the above, as
follows. The line element, given by Eqs. (42) and (43), can be written

ds2 = εABεA′B′θAA′

⊗ θBB′

, (48)

where the co-frame is represented by a 2×2 matrix θAA′

,

θAA′

=

[

θ00′ θ01′

θ10′ θ11′

]

=

[

θ1 θ3

θ2 θ4

]

. (49)
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For Lorentzian four-metrics this is a Hermitian matrix valued 1-form. By
using the correspondences

θAA′

↔ θ
a

,

δA
Bω̄A′

B′ ↔+ ω̄a
b , δ

A
BΩ̄A′

B′ ↔+ Ω̄a
b ,

δA′

B′ωA
B ↔− ωa

b , δ
A′

B′ΩA
B ↔− Ωa

b , (50)

the Cartan structure equations, Eqs. (44), can be seen to take the spinorial
form

DθAA′

≡ dθAA′

− θAB′

∧ ωA
B − θBA′

∧$A′

B′ = 0,

ΩA
B ≡ dωA

B + ωA
C ∧ ωC

B , (51)

Ω̄A′

B′ ≡ dω̄A′

B′ + ω̄A′

C′ ∧ ω̄C′

B′ .

The anti self-dual and self-dual components of the Lorentzian Levi-Civita
spin connection are given, respectively, by ωA

B and ω̄A′

B′, in agreement with
Eq. (46). Unprimed upper case Latin indices and primed upper case Latin
indices represent, respectively, transformation properties under SL(2, C)L

and SL(2, C)R. The components of the curvature 2-forms are given by

ΩA
B = ΨA

BCDΣCD + 2ΛΣA
B + ΦA

BC
′
D
′ ΣC′D′

,

Ω̄A′

B′ = Ψ̄A′

B′C′D′Σ̄C′D′

+ 2ΛΣ̄A′

B′ + ΦA′

B′CDΣCD, (52)

where ΣA
B = 1/2θA

A′ ∧ θA′

B and Σ̄A′

B′ = 1/2θA′

A ∧ θA
B′ . The anti self-dual and

self-dual components of the Weyl spinor are given, respectively, by the totally
symmetric, complex conjugate spinors ΨABCD and Ψ̄A′B′C′D′ ; and −2ΦA

BC
′
D
′

and 24Λ correspond respectively to the trace free part of the Ricci tensor
and the Ricci scalar.

Einstein’s field equations, with cosmological constant λ, are given by

Gab = −8πTab − λgab, (53)

and the spinor form of the Einstein tensor GAA′

BB′ = −6(1/3ΦAA
′

BB
′ +ΛδA

BδA′

B
′ ),

is given by the 3-form equation

(1/3ΦAA
′

BB
′ + ΛδA

BδA′

B
′ )θBC′

∧ θCB′

∧ θCC′ = ΩA
B ∧ θBA′

= −Ω̄A′

B′ ∧ θAB′

. (54)

Hence the metric is Ricci-flat if and only if

ΩA
B ∧ θBA′

= Ω̄A′

B′ ∧ θAB′

= 0. (55)

19



Consider now the two-component spinor bundle over M with fibre coor-
dinates πA and define on the total space, S, the self conjugate generalized
1-form E given by the quadruple

E =(πAπ̄A′θAA′

,−k−1πADπ̄A′∧θAA′

,−k̄−1DπA∧π̄A′θAA′

, (kk̄)−1DπA∧Dπ̄A′∧θAA′

),
(56)

where θAA′

is a Hermitian matrix valued 1-form on M, and ωA
B and ω̄A′

B′

are complex conjugate sl(2,C) valued connection 1-forms on M. Here, for
example, D denotes a covariant exterior derivative, for example,

DπA ≡ dπA − πBωB
A , (57)

and the choice k1 = k, k2 = k̄ has been made.
By using the results above and the identities for the second derivative,

such as
D2πA = −πBΩB

A, (58)

it is a straightforward matter to show that

dE = (
2
ε,

3
ε,

3

6 ε,
4
ε)

2
ε = πAπ̄A′DθAA′

,
3
ε = k−1[πAπ̄A′Ω̄A′

B′ ∧ θAB′

+ πADπ̄A′ ∧DθAA′

], (59)
3

6 ε = k̄−1[πAπ̄A′ΩA
B ∧ θBA′

+ DπA ∧ π̄A′DθAA′

],
4
ε = (kk̄)−1[DπA ∧Dπ̄A′ ∧DθAA′

− πADπ̄A′ ∧ ΩA
B ∧ θBA′

+ DπA ∧ π̄A′Ω̄A′

B′ ∧ θAB′

].

This leads immediately to the following theorem.
Theorem 3: The self-conjugate generalized 1-form, E, on S, is closed if

and only if

DθAA′

= 0, (60)

ΩA
B ∧ θBA′

= Ω̄A′

B′ ∧ θAB′

= 0.

Consequently, when the four real 1-forms defined by θAA′

are linearly
independent, and hence define a Lorentzian four-metric on M (as in Eq.
(48)), the connection ωa

b is the torsion free Levi-Civita connection, and the
metric is Ricci flat, if and only if the complex generalized 1-form E is closed.
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The one form E, which is closed and hence exact when Einstein’s vacuum
field equations are satisfied, is not unique. For example F ∧ E, where F is
a zero form which is either closed or satisfies the condition E = dF, is also
closed when Einstein’s equations are satisfied. The generalized 1-form E

incorporates both the Witten-Nester 2-form and the Sparling 3-form which
play an important role in the discussion of quantities such as energy in gen-
eral relativity. For a review of the latter and references to higher dimensions
see, for example, Ref. 9. The generalized 1-form E presented here effec-
tively encodes the conditions that the 1-forms θAA′

must satisfy in order to
determine a Ricci flat, Lorentzian, four-metric. By using Theorem 1, the
following corollaries may be obtained. The first is a gauge non-invariant
form, on M, of the gauge invariant result in the theorem.

Corollary 1: Einstein’s vacuum field equations are satisfied if and only
if

EAA′

≡ (θAA′

,−k−1θAB′

∧ ω̄A′

B
′ ,−k̄−1θBA′

∧ωA
B, (kk̄)−1θBB′

∧ωA
B ∧ ω̄A′

B
′ ), (61)

is closed. In non-spinorial notation

Ea = (θa,−k−1θb ∧+ ωa
b ,−k̄−1θb ∧− ωa

b , (kk̄)−1θc ∧− ωa
b ∧

+ ωb
c),

dEa = (
2

εa,
3

εa,
3

6 εa,
4

εa),
2

εa = Dθa,
3

εa = k−1[θb ∧+ Ωa
b −Dθb ∧+ ωa

b ],
3

6 εa = k̄−1[θb ∧− Ωa
b −Dθb ∧− ωa

b ], (62)
4

εa = (kk̄)−1[+ωa
c ∧

− Ωc
b ∧ θb −− ωa

c ∧
+ Ωc

b ∧ θb +− ωa
c ∧

+ ωc
b ∧Dθb].

Corollary 2: (a) E is closed if and only if

E = dF = dF̄, where

F = −(k̄)−1(0, 0, πAπ̄A′θAA′

,−k−1πADπ̄A′ ∧ θAA′

), (63)

F̄ = −(k)−1(0, πAπ̄A′θAA′

, 0, k̄−1πA′DπA ∧ θAA′

).

(b) If E is closed then F− F̄ is closed.
(c) Since

F− F̄ = (kk̄)−1(0, k̄πAπ̄A′θAA′

,−kπAπ̄A′θAA′

, D(πAπ̄A′) ∧ θAA′

), (64)
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F − F̄ is closed if and only if DθAA′

= 0, that is the connection is torsion
free.

In (a) use is made of the equation for the exterior derivative of the complex
generalized zero-form F,

dF = E− (kk̄)−1(0, 0, kπAπ̄A′DθAA′

, πAπ̄A′Ω̄B′

A′ ∧ θAA′

+ πADπ̄A′ ∧DθAA′

).

(An unprimed connection 1-form ωA
B does not appear in F, but E =dF implies

that the connection 1-form ωA
B appearing in the last equation is the anti-self

dual part of the Levi-Civita connection defined by θAA′

.)
It is a straightforward matter to construct, in a similar way, 1-forms which

are closed if and only if a 4- metric is half-flat. It suffices to demonstrate
this here in the case of anti-self dual half-flat holomorphic four-metrics.9−11

Theorem 4: Let g be a holomorphic four-metric on a four-manifold M
given by ds2 = εABεA′B′θAA′

⊗ θBB′

, and let µA
′be any 2-component spinor

field with constant components. Consider the generalized 1-form on the spin
bundle over M given by

E =(πAµA′θAA′

, 0,−k̄−1DπA ∧ µA′θAA′

, 0), (65)

where πA are fibre coordinates on the bundle. Then E is closed if and
only if dθAA′

− θBA′

∧ ωA
B = 0; that is E is closed if and only if the self-dual

part of the curvature of g is zero.
The formulation of this corollary emphasizes certain similarities and dif-

ferences between the requirement that a metric be half-flat on the one hand
and Ricci flat, but not necessarily half flat, on the other. However it can
clearly be more economically expressed in terms of the closure of a general-
ized 1-form of type N = 1 given by (πAµA′θAA′

,−k−1
1 DπA ∧ µA′θAA′

).
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