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Abstract

Research conducted over almost forty years into uniqueness theorems for
equilibrium black holes is surveyed. Results obtained from the 1960s until
2004 are discussed decade by decade. This paper is based on a talk given at
the Kerr Fest: Black Holes in Astrophysics, General Relativity & Quantum
Gravity, Christchurch, August 2004. It appeared in The Kerr Spacetime:
Rotating Black Holes in General Relativity, pp115-143, eds. D L Wiltshire,
M Visser & S M Scott, (Cambridge University Press, 2009).

A brief postscript added in 2012 lists a small selection of more recent
reviews of black hole uniqueness theorems and tests.



1 Introduction

It is approaching forty years since Werner Israel announced the first black
hole uniqueness theorem at a meeting at King’s College London [1]. He had
investigated an interesting class of static asymptotically flat solutions of Ein-
stein’s vacuum field equations. The solutions had regular event horizons, and
obeyed the type of regularity conditions that a broad class of non-rotating
equilibrium black hole metrics might plausibly be expected to satisfy. His
striking conclusion was that the class was exhausted by the positive mass
Schwarzschild family of metrics. This result initiated research on black
hole uniqueness theorems which continues today. Israel’s investigations and
all immediately subsequent work on uniqueness theorems were carried out,
explicitly or implicitly, within the astrophysical context of gravitational col-
lapse. In the early years attention was centred mainly on four dimensional
static or stationary black holes that were either purely gravitational or min-
imimally coupled to an electromagnetic field. More recently, developments
in string theory and cosmology have encouraged studies of uniqueness the-
orems for higher dimensional black holes and black holes in the presence of
numerous new matter field combinations.

In an elegant article Israel has described the background and influences
which led him to formulate his theorem and the immediate reactions, includ-
ing his own, to his result [2]. Historically flavoured accounts, which include
discussions of the evolution of research on black holes and the uniqueness
theorems, have also been written by Kip Thorne and Brandon Carter [3, 4].
In the 1960s observational results such as the discovery of quasars and the
microwave background radiation stimulated a new interest in relativistic as-
trophysics. There was increased activity, and more sophistication, in the
modelling of equilibrium end states of stellar systems and gravitational col-
lapse [5]. The pioneering work on spherically symmetric gravitational col-
lapse carried out in the 1930s [6] was extended to non-spherical collapse, see
e.g. [7, 8. Significant strides were made in the use of new mathematical
tools to study general relativity. Especially notable amongst these, as far
as the early theory of black holes was concerned, were the constructions of
the analytic extensions of the Schwarzschild and Reissner-Nordstrém solu-
tions [9, 10, 11], the analyses of congruences of null geodesics and the optics
of null rays, the precise formulation of the notion of asymptotic flatness in
terms of a conformal boundary [12], and the introduction of trapped sur-
faces. In addition, novel approaches to exploring Einstein’s equations, such



as the Newman-Penrose formalism [13], were leading to new insights into
exact solutions and their structure.

In 1963, by using a null tetrad formalism in a search for algebraically
special solutions of Einstein’s vacuum field equations, Roy Kerr found an
asymptotically flat and stationary family of solutions, metrics of a type that
had eluded discovery for many years [14]. He identified each member of the
family as the exterior metric of a spinning object with mass m and angular
momentum per unit mass a. The final sentence of his brief paper announcing
these solutions begins: ‘It would be desirable to calculate an interior solution
to get more insight into this’ [the multipole moment structure]. Completely
satisfying model interiors to the Kerr metric have not yet been constructed,
but the importance of these metrics does not reside in the fact that they
might model the exterior of some rather particular stellar source. The Kerr
family of metrics are the most physically significant solutions of Einstein’s
vacuum field equations because they contain the Schwarzschild family in the
limit of zero angular momentum and because they are believed to constitute,
when a? < m?, the unique family of asymptotically flat and stationary black
hole solutions. Within a few years of Kerr’s discovery the maximal ana-
lytic extension of the Kerr solution was constructed and many of its global
properties elucidated. [15, 16, 17].

In current astrophysics the equilibrium vacuum black hole solutions are
regarded as being the stationary exact solutions of primary relevance, with
accreting matter or other exterior dynamical processes treated as small per-
tubations. However, exact black hole solutions with non-zero energy mo-
mentum tensors have always been studied, despite the fact that direct ex-
perimental or observational support for the gravitational field equations of
the systems is often weak or non-existent. In particular, results obtained for
the vacuum space-times are often paralleled by similar results for electrovac
systems describing the coupling of gravity and the source-free Maxwell field.
In 1965 Ted Newman and graduate students in his general relativity class
at the University of Pittsburgh published a family of electrovac solutions
containing three parameters m, a and total charge e, [18]. It was found by
considering a complexification of a null tetrad for the Reissner - Nordstrom
solution, making a complex coordinate transformation, and then imposing a
reality condition to recover a real metric. The Kerr-Newman metrics reduce
to the Reissner-Nordstrom solutions when a = 0 and to the Kerr family when
e = 0 and are asymptotically flat and stationary. Their Weyl tensors are
algebraically special, of Petrov type D, and the metrics are of Kerr-Schild
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type so they can be written as the sum of a flat metric and the tensor product
of a null vector with itself. When 0 < €2 + a? < m? they represent rotating,
charged, asymptotically flat and stationary black holes. Later it was real-
ized that this family could easily be extended to a four parameter family by
adding a magnetic charge p. The general theory of the equilibrium states
of asymptotically flat black holes is based on concepts and structures which
were first noted in investigations of the Kerr and Kerr-Newman families. In
1968 Israel extended his vacuum uniqueness theorem to static asymptoti-
cally flat electrovac space-times [19]. He showed that the unique black hole
metrics, in the class he considered, were members of the Reissner-Nordstrom
family of solutions with charge e and e? < m?. This result, while not un-
expected, physically or mathematically, required ingenious extensions of the
calculations in his proof of the first theorem.

Until 1972 the only known asymptotically flat stationary, but not static,
solutions of Einstein’s vacuum equations with positive mass were members
of the Kerr family. In that year further stationary vacuum solutions, which
also happened to be axisymmetric, were published [20]. Nevertheless, suf-
ficient was known about the Kerr solution by the time Israel published his
uniqueness theorem for him to be able to ask, towards the end of his paper, if
in the time independent but rotating case a similar uniqueness result might
hold for Kerr-Newman metrics. This question developed into what for a
while came to be referred to as the ‘Carter-Israel conjecture’. This proposed
that the Kerr-Newman solutions with a? + €2 + p? < m? were the only sta-
tionary and asymptotically flat electrovac solutions of Einstein’s equations
that were well-behaved from infinity to a regular black hole event horizon.
More broadly it was conjectured that, irrespective of a wide range of initial
conditions, the vacuum space-time outside a sufficiently massive collapsed
object must settle down so that asymptotically in time its metric is well
approximated by a member of the Kerr (or Kerr-Newman) family. The
emergence of these conjectures was significantly influenced by John Wheeler
with his ‘black holes have no hair’ conjecture [21], and by Roger Penrose and
the wide ranging paper he published in 1969 [22]. Amongst the topics Pen-
rose discussed in this paper was the question of whether or not singularities
that form as a result of gravitational collapse are always hidden behind an
event horizon. He raised the question of the existence of a ‘cosmic censor’
that would forbid the appearance of ‘naked’ singularities unclothed by an
event horizon. Subsequently there have been many investigations of what
has become termed ‘the weak cosmic censorship hypothesis’ [23]. Roughly
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speaking this says that, generically, naked singularities visible to distant ob-
servers do not arise in gravitational collapse. Although numerous models
providing examples and possible counter-examples have been studied and
formal theorems proven, the extent of the validity of the hypothesis is still
not settled. Nevertheless, in the proofs of the uniqueness theorems it is
always assumed that there are no singularities exterior to the event horizon.

In this article a broad introduction to the way in which uniqueness the-
orems for equilibrium black holes have evolved over the decades will be pre-
sented. Obviously the point of view and selection of topics is personal and
incomplete. Fortunately more detail and other perspectives are available
in various review papers. These will be referred to throughout this article.
Comprehensive overviews of the four dimensional black hole uniqueness the-
orems, and related research such as hair and no hair investigations, can be
found in a monograph and subsequent electronic journal article by Markus
Heusler [24, 25]. Here attention will be centred on classical (bosonic) physics
and the uniqueness theorems for static and stationary black hole solutions of
Einstein’s equations in dimensions d > 4. So supersymmetric black holes
and models in manifolds with dimension less than four, for instance, will not
be discussed.

In the next section Israel’s first theorem will be reviewed and some of the
issues raised by it will be noted. These issues will be addressed in subse-
quent sections, decade by decade. The third section deals with the 1970s
when the foundations of the general theory and the basic uniqueness results
for static and stationary black hole space-times were established. This is
followed in the next section by a discussion of the progress made in the 1980s.
During that period novel approaches to the uniqueness problems for rotating
and non-rotating black holes were introduced and new theorems were proven.
In addition that decade saw the construction of black hole solutions of Ein-
stein’s equations in higher dimensions and the investigation of systems with
more complicated matter configurations. The motivation for much of this
research came from various approaches to the problem of unifying gravity
with the other fundamental forces, rather than from astrophysical consider-
ations. The fifth section considers developments in the 1990s. Once again
there were two rather distinct strands of activity. There was a rigorous
re-consideration of the mathematical foundations of the theory of four di-
mensional equilibrium black holes laid down in the 1970s. As a result of
this research a number of gaps in the early work have now been filled and
mathematically more complete theorems have been established. There was



also a vigorous continuation and extension of the research on black holes
and new matter field combinations that draws much of its inspiration from
the study of gauge theories, thermodynamics and string theory. Uniqueness
theorems for higher dimensional black holes and black holes in the presence
of a non-zero cosmological constant are discussed in the sixth section. This
work, stimulated by string theory and cosmology, has shown how changing
the space-time dimension, or the structure of the field equations and the
boundary conditions, affects uniqueness theorems. The most notable new
result has been the recent demonstration that in five dimensions the higher
dimensional Kerr black holes are not the only stationary rotating vacuum
black hole solutions.

It is a pleasure to acknowledge the contributions made by Roy Kerr to
general relativity. The metrics bearing the names of Kerr, Newman, Nord-
strom, Reissner and Schwarzschild have been central to the study of black
hole space-times. One looks forward to the time when all the theoretical
studies will be tested in detail by observations and experiments. There are
compelling questions to be answered. What is the relationship between the
observed astrophysical black holes and the Kerr and Schwarzschild black hole
solutions [26]7 More speculatively, what, if anything, will the Large Hadron
Collider (LHC) being constructed at Cern reveal about black holes [27]7

The sign conventions of reference [28] are followed, and ¢ = G = 1. Unless
it is explicitly stated otherwise it will be assumed that the cosmological
constant is zero and the space-times considered are asymptotically flat and
four dimensional.

2 Israel’s 1967 theorem and issues raised by
it

In his paper Fvent Horizons in Static Vacuum Space-Times, published in

1967, Israel investigated four dimensional space-times, satisfying Einstein’s

vacuum field equations [1]. The space-times are static; that is, there exists
a time-like hypersurface orthogonal Killing vector field, k%,

k‘a/{?a < 0; k‘[aVBk‘ﬂ = 0, (1)



and an adapted coordinate system (¢, z%), such that £* = (1,0,0,0), and the
four dimensional line element is

ds? = —v?dt* + gapdrda’. (2)

Here v and the Riemannian 3-metric g, are independent of . In this coor-
dinate system the vacuum field equations take the form

@GR, =vD*Dyv =0
(4)Rta =0
@R = Ray — v Dy Dyv = 0. (3)

where R, and D, denote, respectively, the Ricci tensor and covariant deriv-
ative corresponding to g,. The class of static space-times considered by
Israel is required to satisfy the following conditions.

On any t = const. space-like hypersurface, ¥, maximally consistent with
k%, <0

(a) X is regular, empty, non-compact and ‘asymptotically Euclidean’,
with the Killing vector £“ normalized so that k“k, — —1 asymptotically.

(b) The invariant 4 R, 5.,5. R formed from the four dimensional Rie-
mann tensor is bounded on X..

(c) If v has a vanishing lower bound on ¥, the intrinsic geometry (char-
acterized by ?)R) of the 2-spaces v = ¢ is assumed to approach a limit as
¢ — 0T corresponding to a closed regular two-space of finite area.

(d) The equipotential surfaces in ¥, v =const.> 0, are regular, simply
connected closed 2-spaces.

Conditions (a) to (c) aim to enforce asymptotic flatness and geometrical
regularity on and outside the boundary of the black hole given by v — 0.
The latter is also assumed to be a connected, compact 2-surface with spher-
ical topology, so a single black hole is being considered. Condition (d), the
assumption that the equipotential surfaces of v do not bifurcate, and hence
have spherical topology, implies the absence of points where the gravitational
force acting on a test particle is zero. The status of this assumption is dif-
ferent from the others and its significance and implications were unclear. It
was of central technical importance in the proof of the theorem because it
allowed X to be covered by a single coordinate system with v as one of the
coordinates. Using this coordinate system Israel constructed a number of
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identities from which he was able to deduce that the only static four dimen-
sional vacuum space-time satisfying (a), (b), (c) and (d) is Schwarzschild’s
spherically symmetric vacuum solution,

ds* = —v*dt® +-v72dr? + r?dQs,
v? = (1-2mr™), 0<2m <r < oo. (4)

In 1968 Israel published the proof of a similar theorem for static electrovac
space-times [19]. By making similar assumptions and taking a similar ap-
proach, but extending the calculations of his vacuum proof in a non-trivial
and ingenious way, he obtained an analogous uniqueness theorem for the
Reissner-Nordstrom black hole solutions with e? < m?.

Israel’s theorem prompted a number of questions. Some arose immedi-
ately. Others became of interest later, mainly through the influence of string
theory and cosmology. They include the following.

e What is the appropriate global four dimensional formulation of black
hole space-times? What are the possible topologies of the two dimen-
sional surface of the black hole? In the equilibrium case what is the
relationship between the Lorentzian four geometry and the ‘reduced
Riemannian’ uniqueness problem of the type studied by Israel?

e Are the Kerr and Kerr-Newman families the unique equilibrium vacuum
and electrovac black hole solutions when rotation is permitted?

e What is the significance of the equipotential condition (d) in Israel’s
two theorems and how restrictive is it?

e Could an equilibrium, static or stationary, space-time contain more
than one black hole? In other words, could the assumption that the
equilibrium black hole horizon has only one connected component be
dropped and uniqueness theorems still be proven?

e How mathematically rigorous could the uniqueness theorems be made?

e Would uniqueness theorems still hold when matter fields other than
the electromagnetic field were considered?

e What would be the effect of changing the dimension of space-time or the
field equations by, say, introducing a non-zero cosmological constant?

Some of these questions continue to be addressed today.
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3 The 1970s - laying the foundations

During the 1970s the basic framework and theorems which have shaped or
influenced all subsequent research on black hole uniqueness theorems were
formulated or established.

A paper by Stephen Hawking, published in 1972, initiated the detailed
global analysis of four dimensional, asymptotically flat, stationary black hole
systems [29]. In this paper he drew on previous work on the global structure
of space-time, primarily by Penrose, Robert Geroch and himself, to describe
the causal structure exterior to black holes. His lectures at the influential
1972 Les Houches summer school also dealt with these investigations [30].
These results were presented in more detail in the 1973 monograph The
Large Scale Structure of Space-Time [31]. In these works asymptotic flatness
is imposed by using Penrose’s definition of weakly asymptotically simple
space-times [32, 33]. In Hawking’s paper it is as/s\l/lmed that the space-time
M can be conformally embedded in a manifold M with boundaries, future
and past null infinity J* and J~, providing end points for null geodesics
that propagate to asymptotically large distances to the future or from the
past.  The boundary of the region from which particles or photons can
escape to future null infinity, that is the boundary of the set of events in
the causal past of future null infinity, defines the future event horizon H*.
In the general setting this is not assumed to be connected, allowing for the
possibility of systems with more than one black hole. The event horizon,
generated by null geodesic segments, forms the boundary between the black
holes region and the asymptotically flat region exterior to the black holes.The
two dimensional surface formed by the intersection of a connected component
of H™ and a suitable space-like hypersurface, defining a moment in time,
corresponds to (the surface of) the black hole at that time. By changing the
time orientation a past event horizon, H~ and white hole may be similarly
defined. The manifold M is required to satisfy a condition, asymptotic
predictability, which ensures that there are no naked singularities.

In the equilibrium case, it is assumed that the space-time is stationary.
This means, in the black hole context, that there exists a one parameter group
of isometries generated by a Killing vector field, £%, that in the asymptotically
flat region approaches a unit time-like vector field at infinity.  When a
time-like Killing vector field is hypersurface orthogonal the space-time is not
only stationary but is also static. Henceforth in this article attention will
be mainly confined to the equilibrium situation and the domain of outer



communications ((M)). This is the set of events from which there exist
both future and past directed curves extending to arbitrary large asymptotic
distances. The Killing vector field k“ cannot be assumed to be time-like in
all of ((M)) as this would disallow ergo-regions, as in Kerr-Newman black
holes, where k* is space-like. All the uniqueness theorems apply to ((M)).

Hawking used this framework to show, justifying one of Israel’s assump-
tions, that the topology of the two-surface of an equilibrium black hole is
spherical. More precisely, he used the Gauss-Bonnet theorem to establish
that, when the dominant energy condition is satisfied, the two dimensional
spatial cross-section of each connected component of the horizon (in this
article often just called the boundary surface or horizon of a black hole)
must have spherical or toroidal topology. He then provided an additional
argument aimed at eliminating the possibility of toroidal topology.

Hawking also introduced the strong rigidity theorem, for analytic mani-
folds and metrics, when matter in the space-time is assumed to satisfy the
energy condition and well behaved hyperbolic equations.  This theorem
relates the teleologically defined event horizon to the more locally defined
concept of a Killing horizon [34, 35, 36]. A null hypersurface whose null
generators coincide with the orbits of a one parameter group of isometries is
called a Killing horizon. According to the strong rigidity theorem the event
horizon of stationary black hole is the Killing horizon of a Killing vector [*.
The horizon is called rotating if this Killing vector field does not coincide
with £4. When the horizon is rotating Hawking concluded that there must
exist a second Killing vector field m®. He then argued that the domain of
outer communications of a rotating black hole had to be axially symmetric,
with the axial symmetry generated by a Killing vector field m®.

The relation between the appropriately normalized Killing vector fields
can be written, [* = k*+ Qm®, where the non-zero constant {2 is the angular
velocity of the horizon. When (2 is zero (and m® is undefined) so that the
event horizon is a Killing horizon for the asymptotically time-like Killing
vector k%, it was argued that the domain of outer communications had to be
static. In other words, according to this staticity argument an asymptotically
flat and stationary black hole which is not rotating must have a static domain
of outer communications and therefore £* must be time-like and hypersurface
orthogonal in ((M)) [37]. Part of the proof of this result was based on
unsatisfactory heuristic considerations and it was not until the 1990’s that
the staticity theorem was firmly established. This theorem will be briefly
discussed again later.
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Hawking’s calculations employed the assumption that the space-times,
horizons and metrics considered were analytic and analytic continuation ar-
guments were used. A theorem proven by Henning Miiller zum Hagen, based
on the elliptic nature of the relevant equations, provides the justification for
the assumption of analyticity locally in stationary systems [38]. However an-
alytic continuations are not necessarily unique. The complete elimination of
certain analyticity assumptions, probably more of mathematical than phys-
ical significance but still desirable, remains to be effected, see for example
[39].

The strong rigidity and staticity theorems are important because they
permit the equilibrium uniqueness problems to be reduced from problems
in four dimensional Lorentzian geometry to two distinct types of lower di-
mensional Riemannian boundary value problems. In the rotating case the
system may be taken to be stationary and axially symmetric and hence the
uniqueness problem may be reduced to a two dimensional Riemannian prob-
lem. In the non-rotating case the system may be taken to be static and
hence the problem may be reduced to a three dimensional Riemannian prob-
lem. In the remainder of this article most attention will be focused on these
dimensionally reduced uniqueness problems.

On each connected component of the horizon of an equilibrium black hole
the normal Killing vector field (* satisfies the equation V,(I°l5) = —2kl,.
According to the first law of black hole mechanics k, the surface gravity,
is constant there. A connected component of the horizon is called non-
degenerate if the surface gravity is non-zero there and degenerate otherwise.
The connected component of a non-degenerate future horizon can be re-
garded, in a precisely defined sense, as comprising a branch of a bifurcate
Killing horizon. This is a pair of Killing horizons, for the same Killing vector
field, which intersect on a compact space-like bifurcation two-surface where
the Killing vector vanishes. Old arguments for this technically important re-
sult were superseded by better ones in the 1990s [40]. The early uniqueness
theorems applied only to black holes with non-degenerate horizons, satis-
fying the bifurcation property, as in the non-extremal Kerr-Newman black
holes. The first attacks on these reduced Riemannian problems also assumed
that the horizon was connected so that there was only one black hole. Sub-
sequently, uniqueness theorems for static systems with non-connected hori-
zons have been proven, and comparatively recently theorems that rigorously
include the possibility of degenerate horizons have also been constructed.
While the physical plausibility of stable equilibrium systems of more than
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one black hole may be questionable, and the realizability in nature of de-
generate horizons is moot, dealing with them mathematically has brought
its own rewards. Re-considerations of the agenda setting global analyses of
equilibrium black hole space-times will be discussed in a later section.
Carter also presented a series of important lectures at the 1972 Les
Houches summer school [37]. In his lecture notes he collected together
and extended results he had obtained over a number of years and presented
a systematic analysis of asymptotically flat, stationary and axi-symmetric
black holes. Subsequently he has reconsidered and extended this mater-
ial in a number of reviews and lecture series [41, 42, 43]. A major topic
in his lectures was the reduction of the uniqueness problems for stationary,
axisymmetric vacuum and Einstein-Maxwell space-times to two dimensional
boundary value problems. It was well known that locally, in coordinates
adapted to the symmetries, certain of the Einstein and other field equations
for such systems may be reduced to a small number of non-linear elliptic
equations with a small number of metric and field components as dependent
variables. The remaining field and metric components are then derivable
from these variables by quadratures [24, 28]. Carter showed that this could
be done globally on the domain of outer communications with the regularity
and black hole boundary conditions formulated in a comparatively simple
way. He dealt with domains of outer communication for which each con-
nected component of the future boundary H* of ((M)) is non-degenerate
and, by Hawking’s theorem, topologically R x S%. He also made a natural
causality requirement, that off the axi-symmetry axis X = m®m, > 0 in
((M)). For vacuum and electrovac systems, in particular, he demonstrated
that, apart from the axis of symmetry where X is zero, a simply connected
domain of outer communications could be covered by a single coordinate
system (¢,x,y,®) in which the metric took a Papapetrou form. In these
coordinates, k* = (1,0,0,0) and m® = (0,0,0,1). He showed that the axi-
symmetric stationary black hole metric on ((M)) may be written in the form

ds* = =Vdt* + 2Wdtdp + Xdp* + Zdo?,
XV +W? = (2% =) -y, (5)

where for a single black hole, 0 < ¢ < z, =1 <y <1, ¢ = £ and A is

Ar
the black hole area. Carter then reduced the vacuum and Einstein-Maxwell
uniqueness problems for single black holes to boundary value problems for

systems of elliptic partial differential equations on a two dimensional manifold
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D with global prolate spheroidal coordinates (x,y) and metric

dx? dy?

do® = .
g x2—c2+1—y2

(6)

In the vacuum case, to which attention will now be confined, ¢ = m —
2€Q)J, where m is the mass and J is the angular momentum about the axi-
symmetry axis. The relevant Ernst-like vacuum field equations on D can be
conveniently written in terms of a single complex field £ = X + 1Y, where Y
is a potential for W, and derived from a Lagrangian density

I_ VEVE (7

(E+E)*
where V denotes the covariant derivative with respect to the two-metric.
The complex field equation is

v( pVE )+ ZpVEYE _ (8)
(E+ E)? (E+E)3

All the metric components are uniquely determined by E and the boundary
conditions. (When the metric is not only axi-symmetric but also static, Y =
W =0, and the field equation reduces to the linear equation V(pVIn X) =
0.) For a black hole solution E is required to be regular when z > ¢ > 0, and
—1 <y < 1. Boundary conditions on F and its derivatives ensure regularity
on the axis of symmetry as y — £1 and regularity of the horizon as z — ¢ >
0. The conditions, 272X = (1 -¢?)+ Oz 1), Y =2Jy(3—¢*) + O(z7!) as
x — 00, ensure asymptotic flatness.

In 1971 Carter was able to prove, within this framework, that station-
ary axisymmetric vacuum black hole solutions must fall into discrete sets of
continuous families, each depending on at least one and and most two pa-
rameters [44]. The unique family admitting the possiblity of zero angular
momentum is the Kerr family with a®> < m?. This was a highly suggestive
but not conclusive result. Since the theorem was deduced by considering
equations and solutions linearized about solutions of Eq.(8) it was not at all
clear if, or how, the full non-linear theory could be handled. However, in
1975 T constructed a proof of the uniqueness of the Kerr black hole by using
Carter’s general framework [45]. T'wo possible black hole solutions F; and Es
were used to construct a non-trivial generalized Green’s identity of the form
divergence = positive terms mod field equations. This was integrated over
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the two dimensional manifold D. Stokes’ theorem and the boundary condi-
tions were then used to show that the integral of the left hand side was zero.
Consequently each of the postive terms on the right hand side had to be zero
and this implied that £y = E5. Hence, Kerr black holes, with metrics on the
domain of outer communication given, in Boyer-Lindquist coordinates, by

by
ds* = —Vdt* + 2Wdtdp + Xd* + Zdﬁ + Xdb?, (9)
where 0 < a? < m?; ry, = m+ (m? — a®)"/? < r < o0, and

A — a®sin®0 asin?0(r? +a? — A)
N L U]

2 1 42)2 _ Ag?sin?
X — (r* +a®) = a* sin 9311129’
Y =r*+a*cos’0, A =r*+a*—2mr, (10)

are the only stationary, axially symmetric, vacuum black hole solutions with
non-degenerate connected horizons. According to Hawking’s rigidity theo-
rem, ‘axially symmetric’ can be removed from the previous sentence.

In a separate development in the early 1970s Israel’s theorems for static
black holes were reconsidered by Miiller zum Hagen, Hans Jurgen Seifert and
myself. First we looked at static, single black hole vacuum space-times [46].
In this case the event horizon is connected and, by the generalized Smarr
formula [37], necessarily non-degenerate. In a somewhat technical paper we
were able to avoid using both Israel’s assumption (d) about the equipotential
surfaces of v, and his assumption about the spherical topology of the horizon.
Our extension of Israel’s theorem made use of the fact that the spacial part of
the Schwarzschild metric, gq, is conformally flat. Indeed all asymptotically
Euclidean, spherically symmetric three-metrics are locally conformally flat.
Now a three-metric is conformally flat if and only if the Cotton tensor

1 1
Rabc = Db(Rac - ZRgac> - Dc<Rab - ZRgab>- (11)

is zero. By using a three dimensionally covariant approach we were able to
show that the Cotton tensor had to vanish and thence to conclude that the
only static vacuum black holes in four dimensions, with connected horizons,
were Schwarzschild black holes. I was soon able to simplify and improve this
proof [47]. To illustrate this approach an outline, based mainly on the latter
paper but also containing results from [46], is presented in the appendix.
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Using similar techniques we also extended Israel’s static electrovac the-
orem to prove uniqueness of the Reissner-Nordstrom black hole when the
horizon was again assumed to be connected [48]. The Smarr formula does
not imply that the horizon is non-degenerate in this case, and satisfactory
rigorous progress with degenerate electrovac horizons was not made until the
late 1990s. In this paper we also noted that solutions of the Einstein-Maxwell
equations might exist for which the metric was static but the Maxwell field
was time dependent. We identified the form of these Maxwell fields, and
the reduced equations they had to satisfy. However we were only able to
construct a plausibility argument against such black hole solutions. Subse-
quently it has been shown that Einstein-Maxwell solutions of this type, albeit
not asymptotically flat solutions since they are cylindrically symmetric, do
exist [49]. Further investigation of this type of non-inherited symmetry
for other fields might be of interest. I also managed to generalize Carter’s
no-bifurcation result from the vacuum case considered by him to station-
ary Einstein-Maxwell space-times [50]. I showed that black hole solutions,
with connected non-degenerate horizons, formed discrete continuous families,
each depending on at most four parameters (effectively the mass m, angular
momentum/unit mass a, electric charge e and magnetic charge p). Fur-
thermore, of these only the four parameter Kerr-Newman family contained
members with zero angular momentum.

Investigations of Weyl metrics corresponding to static, axially-symmetric,
multi-black hole configurations, with non-degenerate horizons, were under-
taken by Miiller zum Hagen and Seifert, and independently by Gary Gibbons
[51, 52]. The type of method that Hermann Bondi [53] had used to tackle the
static, axially symmetric two body problem was employed. It was shown
that the condition of elementary flatness failed to hold everywhere on the
axis of axial symmetry. Hence it was concluded that static, axially symmet-
ric configurations of more than one black hole in vacuum, or of black holes
and massive bodies which do not surround or partially surround a black
hole, do not exist. Jim Hartle and Hawking appreciated that things were
different when the black holes were charged [54]. They showed that com-
pleted Majumdar-Papapetrou electrovac solutions [55, 56], derivable from a
potential with discrete point sources, could be interpreted as static, charged
multi-black hole solutions. Each of the black holes has a degenerate horizon
and a charge with magnitude equal to its mass. The electrostatic repulsion
balances the gravitational attraction and the system is in neutral equilib-
rium. The single black hole solution is the e? = m? Reissner -Nordstrom
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solution. ~ While these multi-black hole solutions are physically artificial,
their existence showed that mathematically complete uniqueness theorems
for electrovac systems had to take into account both the Kerr-Newman and
the Majumdar-Papapetrou solutions and systems with horizons that need
not be connected and could be degenerate. When static axisymmetric elec-
trovac space-times were considered, and each black hole was assumed to have
the same mass to charge ratio, Gibbons concluded that the solutions had to
be Majumdar-Papapetrou black holes [57].

Studies of black holes with other fields, such as scalar fields, were also
initiated. Working within the same framework as Israel, J.E. Chase showed
that the only black hole solution of the static Einstein-scalar field equations,
when the massless scalar field was minimally coupled, was the Schwarzschild
solution [58]. In other words the scalar field had to be constant. A similar
conclusion was reached by Hawking when he considered stationary Brans-
Dicke black holes [59]. His calculation was a very simple one using, in
a mathematically standard way, just the linear scalar field equation in the
Einstein gauge. Interestingly this calculation, and a similar one by Jacob
Bekenstein, did not depend heavily on all the detailed properties of the hori-
zon.

Wheeler’s ‘black holes have no hair’ conjecture inspired a number of
investigations of matter in equilibrium black hole systems. According to
the original no hair conjecture collapse leads to equilibrium black holes de-
termined uniquely by their mass, angular momentum and charge (electric
and/or magnetic), asymptotically measurable conserved quantities subject
to a Gauss law, and have no other independent characteristics (hair) [21, 60].
The linear stability analyses, see e.g [61], and Richard Price’s observation of
a late time power law decay in pertubations of the Schwarzschild black hole
[62], provided support for both the weak cosmic censorship hypothesis and
the no hair conjecture. Other early investigations also supported the no hair
conjecture. For instance, Bekenstein showed that the domains of outer com-
munication of static and stationary black holes could not support minimally
coupled massive or massless scalar fields, massive spin 1 or Proca fields, nor
massive spin 2 fields [63, 64]. He was able to draw his conclusions without
using the Einstein equations so details of the gravitational coupling were not
used, only the linear matter field equations and boundary conditions were
needed. Bekenstein also studied a black hole solution, with a conformally
coupled scalar field, that had scalar hair [65, 66]. It turned out that this
solution has unsatisfactory features, the scalar field diverges on the horizon
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and the solution is unstable. Nevertheless such work was the forerunner of
many later hair and no-hair investigations.

By the mid 1970s the uniqueness theorems for static and stationary black
hole systems discussed above had been constructed and the main thrust of
theoretical interest in black holes had turned to the investigation of quantum
effects. While not all of the results obtained in this decade, and discussed
above, were totally satisfactory or complete [4] they provided the foundations
and reference points for all subsequent investigations. At the end of the
decade the main gap in the uniqueness theorems appeared to be the lack
of a proof of the uniqueness of a single charged stationary black hole. It
seemed clear that the uniqueness proof for the Kerr solution was extendable
to a proof of Kerr-Newman uniqueness. However the technical detail of
my electrovac no-bifurcation result was sufficiently complicated to make the
prospect of trying to construct a proof rather unpalatable, unless a more
systematic way of attacking the problem could be found.

4 The 1980s - systematization and new be-
ginnings

The 1980s saw both the introduction of new techniques for dealing with
the original stationary and static black hole uniqueness problems and the
investigation of new systems of black holes. The interest in the latter was
grounded not so much in astrophysical considerations as in renewed attempts
to develop quantum theories that incorporated gravity. It included the
construction of higher dimensional black hole solutions and the investigation
of systems such as Einstein-dilaton-Yang Mills black holes.

The uniqueness problem for stationary, axially symmetric electrovac black
hole space-times was independently reconsidered, within the general frame-
work set up by Carter, by Gary Bunting and Pawel Mazur. The reduced two
dimensional electrovac uniqueness problem is formally similar to the vacuum
problem outlined above, but there are four equations and dependent vari-
ables instead of two, so the system of equations is more complicated. It had
long been realized that the Lagrangian formulation of these equations might
play an important role in the proof of the uniqueness theorems. In fact I
had used the Lagrangian for the vacuum equations given by Eq.(7), which is
positive and quadratic in the derivatives, in a reformulation of Carter’s no-
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bifurcation result [67]. However there are more productive interpretations of
the Lagrangian formalism. It had been known since the mid 1970s that the
Euler-Lagrange equations corresponding, as in Eq.(8), to the basic Einstein
equations for stationary axi-symmetric metrics, could be interpreted as har-
monic map equations [68]. In addition, in the 1970s there was a growth of
interest in generalized sigma models; that is, in the study of harmonic maps
from a Riemannian space M to a Riemannian coset space N = G/H, where
G is a connected Lie group and H is a closed sub-group of G. Influenced
by these developments Bunting and Mazur used these interpretations of the
Lagrangian structure of the equations. Bunting’s approach was more geo-
metrically based, and in fact applied to a general class of harmonic mappings
between Riemannian manifolds. He constructed an identity which implied
that the harmonic map was unique when the sectional curvature of the tar-
get manifold was non-positive [69, 70]. Mazur on the other hand focused
on a non-linear sigma model interpretation of the equations, with the tar-
get space N a Riemannian symmetric space. Exploiting the symmetries
of the field equations, he constructed generalized Green’s identities when
N =SU(p,q)/S(U(p) x U(q)). When p =1, ¢ = 2 he obtained the identity
needed to prove the uniqueness of the Kerr-Newman black holes. This is a
generalization of the identity used in the proof of the uniqueness of the Kerr
black hole which corresponds to the choice N = SU(1,1)/U(1) [71, 72, 73].
Bunting and Mazur’s systematic approaches provided computational ratio-
nales lacking in the earlier calculations, and enabled further generalizations
to be explored within well-understood frameworks. In summary, Bunting
and Mazur succeeded in proving that stationary axi-symmetric black hole
solutions of the Einstein-Maxwell electrovac equations, with non-degenerate
connected event horizons, are necessarily members of the Kerr-Newman fam-
ily with, if magnetic charge p is included, a? + €2 + p* < m2.

In another interesting development Bunting and Masood-ul-Alam con-
structed a new approach to the static vacuum black hole uniqueness problem
[74]. They used results from the positive mass theorem, published in 1979,
to show, without the simplifying assumption of axial symmetry used in ear-
lier multi-black hole calculations, that a non-degenerate event horizon of a
static black hole had to be connected. In other words, there could not be
more than one such vacuum black hole in static equilibrium. The thrust of
their proof was to show, again, that the three metric g,, was conformally flat.
However their novel method of proving conformal flatness did not make use
of the Cotton tensor and so was not so tied to use in only three dimensions.
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In addition their approach relied much less on the details of the field equa-
tions. Consequently it subsequently proved much easier to apply it to other
systems. Their proof that the constant time three-manifold > with 3-metric
gap must be conformally flat proceeded along the following lines. Starting
with (X, gap), as in Eq.(2), they constructed an asymptotically Euclidean,
complete Riemannian three-manifold (N, v,;) with zero scalar curvature and
zero mass. This was done by first conformally transforming the metric,

9ab — FYab = 1_16(1 F0) b (12)
on two copies of (3, gqp) so that (X, +7,5) was asymptotically Euclidean with
mass m = 0, and (X, —74) "compactified the infinity". Then the 2 copies
of 3 were pasted along their boundaries to form the complete three-manifold
(N,7va). They then utilised the following corollary to the positive mass
theorem proven in 1979 [75, 76].

Consider a complete oriented Riemannian three-manifold which is asymp-
totically Fuclidean. If the scalar curvature of the three-metric is non-negative
and the mass is zero, then the Riemannian manifold is isometric to Fuclidean
three-space with the standard FEuclidean metric.

From this result it follows that (V, 7,5) has to be flat and therefore (¥, g) is
conformally flat. Thus, as in the earlier uniqueness proofs, the metric must
be spherically symmetric. Therefore the exterior Schwarzschild spacetime
exhausts the class of maximally extended static vacuum, asymptotically flat
space-times with non-degenerate, but not necessarily connected, horizons.

Further uniqueness theorems for static electrovac black holes were also
proven [77]. In particular, Bunting and Masood-ul-Alam’s type of approach
was used to construct a theorem showing that a non-degenerate horizon of a
static electrovac black hole had to be connected, and hence the horizon of a
Reissner-Nordstrom black hole with e? < m? [78].

In this decade new exact stationary black hole solutions, some with more
complicated matter field configurations than had been considered in the past,
were increasingly studied. These studies were often undertaken as contribu-
tions to ambitious programmes for unifying gravity and other fundamental
forces. They did shed new light on the no hair conjecture and the ex-
tent to which black hole uniqueness theorems might apply. For example,
generalizations of the four dimensional Einstein-Maxwell equations, which
typically arise from Kaluza-Klein theories, and stationary black hole solu-
tions were studied and uniqueness theorems constructed [79]. Investigation
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of a model naturally arising in the low energy limit of N = 4 supergravity led
Gibbons to find a family of static, spherically symmetric Einstein-Maxwell-
dilaton black hole solutions in four dimensions [80, 81]. These have scalar
hair but carry no independent dilatonic charge. In 1989 static spherically
symmetric non-abelian SU(2) Einstein-Yang-Mills black holes, with vanish-
ing Yang-Mills charges and therefore asymptotically indistinguishable from
the Schwarzschild black hole, were found. The solutions form an infinite dis-
crete family and are labelled by the number of radial nodes of the Yang-Mills
potential exterior to a horizon of given size. Hence there is not a unique
static black hole solution within this Einstein-Yang-Mills class [82, 83, 84].
Although these latter solutions proved unstable, such failures of the no-hair
conjecture and uniqueness encouraged the subsequent investigation of nu-
merous black hole solutions with new matter configurations.

Interest in higher dimensional black holes also started to increase. Higher
dimensional versions of the Schwarzschild and Reissner-Nordstréom solutions
had been found in the 1960s [85] and in 1987 Robert Myers found the higher
dimensional analogue of the static Majumdar-Papapetrou family [86]. The
metric for the Schwarzschild black hole with mass m in d > 3 dimensions is

ds® = —v*dt* + v 2dr® + r?dQ7_, (13)
where v? = (1 — =&5) > 0, dQ2_, is the metric on the (d — 2)—dimensional
unit radius sphere which has area A;_5 and C' = %. As the form of

this metric suggests, these static higher dimensional black holes have similar
properties to the four dimensional solutions. Myers and Malcolm Perry
found and studied the the d dimensional generalizations of the Kerr metrics
[87].  In general the Myers-Perry metrics are characterized by [(d — 1)/2]
angular momentum invariants and the mass. The family of metrics with a
single spin parameter .J is given by

ds® = —dt* + A(dt + asin® 0dp)® + Wdr*+
+ p*d0* + (r* + a?) sin® 0d¢?* + r? cos? QdQ%d_4).

d—5 2
2 2, 2 9 _ M _ rr
p°=r"+a” cos Q, A—ma - Td*5(7“2+(12)_,u’
(d—2)Au-2 2ma
_d=2Aus _ 14
m 6 1" (d—2) -

When a = 0 the metric reduces to the metric given in Eq. (13) and when
d = 4 the metric reduces to the Kerr metric. When d > 4, there are three
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Killing vector fields. If d = 5 there is a horizon if ;1 > a? and no horizon
if u < a®. If d > 5 a horizon exists for arbitrarily large spin. Further
interesting properties are discussed in their paper.

5 The 1990s - rigour and exotic fields

During the last decade of the twentieth century two rather different lines of
research on uniqueness theorems were actively pursued. On the one hand
there was a renewed effort to improve and extend the scope and rigour of the
uniqueness theorems for four dimensional black holes. Here the approach was
more mathematical in nature and emphasized rigorous geometrical analysis.
On the other hand activity in theoretical physics related to string theory,
quantum gravity and thermodynamics encouraged the continued, less formal,
investigations of black holes with new exterior matter fields.

First it should be noted that further progress was made on eliminating
the possibility of static multi-black hole space-times in a number of four
dimensional systems. Bunting and Masood-ul-Alam’s approach to proving
conformal flatness, which does not require the assumption that the horizon is
connected, was used in a new proof that the exterior Reissner-Nordstrém so-
lutions with e? < m? are the only static, asymptotically flat electrovac space-
times with non-degenerate horizons [88]. Proofs of the uniqueness of the fam-
ily of static Einstein-Maxwell-dilaton metrics, originally found by Gibbons
[80, 81], were also constructed by using the same general approach [89, 90].
Stationary axially symmetric black holes with non-degenerate horizons that
are not connected were also studied, but no definitive conclusions have yet
been reached [91, 92, 93]. Whether regular stationary black hole space-
times exist in which repulsive spin-spin forces between black holes are strong
enough to balance the attractive gravitational forces remains unknown. To
date, no uniqueness theorems dealing with stationary, but not static, black
holes that may possess degenerate horizons, such as the extreme Kerr and
the extreme Kerr-Newman horizons, have been proven.

Since the early 1990s significant progress has been made, particularly by
Bob Wald, Piotr Chruéciel and their collaborators, in tidying up and im-
proving the global framework, erected in the 1970s, on which the uniqueness
theorems rest. Mathematical shortcomings in the earlier work, of varying
degrees of importance, were highlighted by Chruéciel in a 1994 review, chal-
lengingly entitled “No Hair” theorems: Folklore, Conjectures, Results [94].
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Statements, definitions and theorems from the foundational work have, where
necessary, been corrected, sharpened and extended, and this line of rigorous
mathematics has now been incorporated into a programme of classification of
static and stationary solutions of Einstein’s equations [95, 96, 97]. Mention
can be made of the more important results. Chruéciel and Wald obtained im-
proved topological results by employing the topological censorship theorem
[98]. For a globally hyperbolic and asymptotically flat space-time satisfying
the null energy condition the topological censorship theorem states that every
causal curve from J~ to J* is homotopic to a topologically trivial curve from
J7 to 7 [99]. Chrusciel and Wald showed that when it applied, the domain
of outer communications had to be simply connected. They also gave a more
complete proof of the spherical topology of the surface of stationary black
holes. Basically, if the horizon topology is not spherical there could be causal
curves, outside the horizon but linking it, that were not deformable to infin-
ity, thus violating the topological censorship theorem [100]. An improved
version of the rigidity theorem for analytic space-times, with horizons that
are analytic submanifolds but not necessarily connected or non-degenerate,
was constructed by Chruéciel. A more powerful and satisfactory proof of the
staticity theorem, that non-rotating stationary black holes with a bifurcate
Killing horizon must be static, was constructed by Daniel Sudarsky and Wald
[101, 102]. The new proof made the justifiable use of a slicing by a max-
imal hypersurface, and supersedes earlier proofs which had unsatisfactory
features. Mention should also be made of the establishment, by Istvan Récz
and Wald, of the technically important result, referred to earlier, concerning
bifurcate horizons [40]. These authors considered non-degenerate event (and
Killing) horizons with compact cross-sections, in globally hyperbolic space-
times containing black holes but not white holes. This is the appropriate
setting within which to consider the equililibrium end state of gravitational
collapse. They showed that such a space-time could be globally extended so
that the image of the horizon in the enlarged space-time is a proper subset
of a regular bifurcate Killing horizon. They also found the conditions under
which matter fields could be extended to the enlarged space-time, thus pro-
viding justification for hypotheses made, explicitly or implicitly, in the earlier
uniqueness theorems. In the late 1990s Chrusciel extended the method of
Bunting and Masood-al-Alam and the proof of the uniqueness theorem for
static vacuum space-times [103]. He considered horizons that may not be
connected and may have degenerate components on which the surface grav-
ity vanishes, and constructed the most complete black hole theorem to date.
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The statement of his main theorem, which applies to black holes solutions
with asymptotically flat regions (ends) in four dimensions, is the following.

Let (M, g) be a static solution of the vacuum Einstein equations with
defining Killing vector k. Suppose that M contains a connected space-
like hypersurface ¥ the closure ¥ of which is the union of a finite number of
asymptotically flat ends and of a compact interior, such that: 1. g, k*k" <0
on ¥. 2. The topological boundary 9% = X\ ¥ of ¥ is a non-empty topological
manifold with g, k*k" = 0 on 9%. Then ¥ is diffeomorphic to R* minus a
ball, so that it is simply connected, it has only one asymptotically flat end,
and its boundary 9% is connected. Further there exists a neighbourhood
of ¥ in M which is isometrically diffeomorphic to an open subset of the
Schwarzschild space-time.

An analogous, although less complete, theorem for static electrovac space-
times that included the possibility of non-connected, degenerate horizons was
also constructed [104, 105]. It was shown that if the horizon is connected,
then the space-time is a Reissner-Nordstrom solution with e? < m?. If the
horizon is not connected, and all the degenerate connected components of
the horizon with non-zero charge have charges of the same sign, then the
space-time is a Majumdar-Papapetrou black hole solution.

In the work more oriented towards the study of black holes and high en-
ergy physics, there was a proliferation of research into ‘exotic’ matter field
configurations such as dilatons, Skyrmions and sphalerons, into various types
of non-minimal scalar field couplings and into fields arising in low energy lim-
its of string theory. This type of research continues today. The immediate
physical relevance of the Lagrangian systems considered is often of less im-
portance than the contribution their study makes to deciding the extent to
which black hole solution spaces can be parametrized by small numbers of
global charges, or to deciding whether or not a class of systems admits stable
solutions with non-trivial hair. Gravitating non-abelian gauge theories and
gravity coupled scalar fields have featured prominently in this research. It
has been shown, for example, that black holes in non abelian gauge theo-
ries, and in theories with appropriately coupled scalar fields, can have very
different hair properties from black holes in the originally studied Einstein-
Maxwell or minimally coupled scalar field theories. Such research has also
provided models that demonstrate the effect of varying the assumptions made
in the early uniqueness theorems. It effectively includes many constructive
proofs of existence and/or non-uniqueness. For instance, the existence of
Einstein-Yang-Mills black holes that have zero angular momentum but need
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not be static has been established [106], and static black holes that need
not be axially symmetric, let alone spherically symmetric, have been shown
to exist [107]. Uniqueness theorems for self-gravitating harmonic mappings
and discussions of Einstein-Skyrme systems can be found in reference [24],
and further information about black holes in the presence of matter fields
can be found, for example, in references [25, 108, 109, 110].

6 The 2000s - higher dimensions and the cos-
mological constant

The important role of black holes in string theory, and recent conjectures that
black hole production may occur and be observable in high energy experi-
ments (TeV gravity) at the LHC [27], have stimulated investigations of black
holes in higher dimensional space-times. In addition observational results in
cosmology, and theoretical speculations in string theory, have encouraged the
continued development of earlier work on black hole solutions of Einstein’s
equations with a non-zero cosmological constant A.

Uniqueness theorems for asymptotically flat black holes with static ex-
teriors have, not unexpectedly, been extended to higher dimensions. In
fact Seungsu Hwang showed in 1998 that the Schwarzshild-Tangherlini fam-
ily, Eq.(13), is the unique family of static vacuum black hole metrics with
non-degenerate horizons [111]. Subsequently other four dimensional unique-
ness theorems for static black holes with non-degenerate horizons have been
extended to dimension d > 4 [112, 113, 114, 115, 116, 117]. All these calcula-
tions deal with the relevant reduced (d—1) dimensional Riemannian problem.
They all follow the approach introduced in four dimensions by Bunting and
Massod ul Alam, and need higher dimensional positive energy theorems (a
topic still being explored) to show that the the exterior (d — 1) dimensional
Riemannian metric must be conformally flat. Appropriate arguments are
then employed to show that the conformally flat Riemannian metrics, and
the space-time metrics and fields, must be spherically symmetric and mem-
bers of the relevant known family of solutions. The stability of certain static
higher dimensional black holes, such as the Schwarzschild family, has also
been investigated and confirmed [118].

It obviously follows from the uniqueness theorems above that those black
hole space-times have horizons that are topologically S%~2, as do the Myers-

24



Perry black holes. However the general methods used to restrict horizon
topologies in four dimensions cannot be used in the same way in higher
dimensions. Although, unlike the Gauss-Bonnet theorem, a version of topo-
logical censorship holds in any dimension it does not restrict the horizon
topology as much when d > 4 [119]. Furthermore it is clear that a rigid-
ity theorem in higher dimensions would not by itself imply the existence of
sufficient isometries to allow the construction of generalizations of harmonic
map or sigma model formulations of the equations governing stationary black
hole exterior geometries. These differences were highlighted in 2002 when it
was shown that in five dimensions, in addition to the Myers-Perry black hole
family with rotation in a single plane, there is another asymptotically flat,
stationary, vacuum black hole family characterized by its mass m and spin J.
This black ring family, as it was termed by its discovers Roberto Emparan
and Harvey Reall, also has three Killing vector fields [120, 121]. However its
horizon is topologically S* x S? whereas the Myers-Perry black holes have S®
horizon topology. Moreover there is a range of values for its mass and spin for
which there exist two black ring solutions as well as a Myers-Perry black hole.
Hence there is not a unique family of stationary black hole vacuum solutions
in five dimensions, and the global parameters m and J do not identify a
unique rotating black hole. The Emparan-Reall family has many interesting
properties and there are charged and supersymmetric analogues. It suffices
to note here that it contains no static and spherically symmetric limit black
hole. Furthermore, analysis of pertubations off the spherically symmetric
vacuum solution suggests that the Myers-Perry solutions are the only regular
black holes near the static limit. The full discussion of this remark and more
details about stability, including the cases where A is non-zero, can be found
in references [118, 122].

It is natural to ask if uniqueness theorems can be constructed when the
class of solutions considered is restricted by further conditions. A couple of
results have shown that this is possible in five dimensions at least [123, 124].
When it is assumed that there are two commuting rotational Killing vec-
tors, in addition to the stationary Killing vector field, and that the horizon
is topologically S3, it has been shown that vacuum black holes with non-
degenerate horizons, must be members of the Myers-Perry family. The
additional assumptions enable the appropriate extensions of the four dimen-
sional uniqueness proofs for stationary black holes to be constructed. In the
vacuum case, for example, the uniqueness problem is formulated as a N =
SL(3,R)/SO(3) non-linear sigma model boundary value problem and the
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corresponding Mazur identity is constructed. However, as is pointed out
in reference [123] this approach does not appear to be extendable to higher
dimensions. In six dimensions, for instance, the Myers-Perry black hole has
only two commuting space-like Killing vector fields. However the direct gen-
eralization of the sigma model formulation used in four and five dimensions
requires the six dimensional space-time to admit three such Killing vector
fields.

When d > 4, the full global context has not, by 2004, been explored in
the same depth as it has been in four dimensions. Differences from the four
dimensional case, another example being the failure of conformal null infinity
to exist for radiating systems in odd dimensions [125], suggest further failures
of uniqueness. Indeed Reall has conjectured that when d > 4, in addition
to the known solutions, there exist stationary asymptotically flat vacuum
solutions with only two Killing vector fields [126].

In conclusion, a brief comment should be made about black hole solutions
of Einstein’s equations with a non-zero cosmological constant A. The Kerr-
Newman family of metrics admits generalizations which include a cosmolog-
ical constant, and these provide useful black hole reference models [37, 127].
Both (locally) asymptotically de Sitter (A > 0) and asymptotically anti-de
Sitter (A < 0) black hole models have been studied quite extensively, mainly
since the 1990s. Topological and hair results may change when A is non-zero;
examples of papers which include general overviews of investigations of these
topics are cited in references [122, 128, 129, 130]. Not so much is known
about uniqueness theorems when A is non-zero. There are non-existence
[131] and uniqueness results for static black holes solutions with A < 0.
Broadly stated, it has been shown that a static asymptotically AdS single
black hole solution with a non-degenerate horizon must be a Schwarzschild-
AdS black hole solution if it has a certain C? conformal spatial completion
[132].
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A A simple proof of the uniqueness of the
Schwarzschild black hole

Consider the static metric and vacuum field equations given by Egs.(1-3).
The conditions which isolated single black hole solutions must satisfy are
formulated on a regular hypersurface X, ¢t = const, where 0 < v < 1. They
are:

(a) asymptotic flatness which here is formulated on ¥ as the requirement
of asymptotically Euclidean topology with the usual boundary conditions,
given in asymptotically Euclidean coordinates, x¢, by

gap = (1 +2mr Y0 + hap; v =1—mr' + p; m const.; (15)

where hg, and p are all O(r~2) with first derivatives O(r3) asr = (Jgp22®)'/?
00.

(b) Regularity of the horizon of the single black hole which is formulated
here as the requirement that the intersection of the future and past horizons
constitute a regular compact, connected, two dimensional boundary B to X
as v — 0. It can be shown that the extrinsic curvature of B in ¥, with
respect to ¢, must vanish, and also that the function

1
w= —§V[ak5]vakﬁ = g%v,, v, (16)

is constant on B. The latter constant, denoted, wg, is the square of the
surface gravity. It is necessarily non-zero (that is the horizon is necessarily
non-degenerate) since the horizon is assumed connected.

Using the vacuum field equations, Egs.(3), the following identities can be
constructed

D,(vD*) = D,vD%, (17)
Dy(vrD) = 20R 4, R™. (18)

By integrating Eq.(17) over ¥ and using the boundary conditions, it can
be seen that the mass m is non-negative, and zero if and only if v is constant
and g, and the four-metric are flat. In a similar way integration of the first
of Egs.(3) leads to the recovery, in this framework, of the generalized Smarr
formula
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drm = wé/QSo, (19)

Here S is the area of B. Integration of Eq.(18) and the use of the Gauss-
Bonnet theorem on B gives

wé/Q/ (PR)dS = 87Tw(1)/2(1 -p) 20, (20)
B

with equality if and only if the three metric g, has zero Ricci tensor and is
therefore flat. It follows that the genus p must be zero and the topology
of B must be spherical. Now by using the field equations to evaluate the
Cotton tensor R, given in Eq.(11), it can be shown that

Raupe R = 4v™*wD, D" w — 4v""wD wDyv — 3v™* DywDw. (21)

Therefore at critical points of the harmonic function v on ¥, where w = 0,
the Cotton tensor and the gradient of w must vanish. This expression can
be used to construct the identities

3
D, (pv~'D"w + quD"v) = —I—Zv_lw_lp[Daw + 8wv(Dav)(1 — v?) 124

+ gv?’w_lRabcR“bc, (22)
where p(v) = (cv?*+d)(1—v?)73 and q(v) = —2¢(1—v?)3+6(cv?+d)(1-0v?)~*
and c and d are real numbers.

It follows from Egs. (21) and (22) that the divergence on the left hand
side of Eq. (22), which is overtly regular everywhere on ¥, is non-negative
on Y when ¢ and d are chosen so that p is non-negative. Making two such
sets of choices in Eq.(22), c = —1,d = +1 and ¢ = 1,d = 0, integrating over
Y, and using the boundary conditions and Gauss’s theorem then gives the
two inequalities

WoSy § T,

w28y = —. (23)
m

It is straightforward to see that these inequalities and Eq.(19) are compatible
if and only if equality holds in Eq.(23). For this to be the case the right hand
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side of Eq.(22) must vanish. Hence Ry, must be zero, so the three-geometry
must be conformally flat and w = wy(1 — v?)%.  Since w has no zeroes on
¥ coordinates (v, z*) like those used by Israel can now be introduced on X.
The three-metric on ¥ then takes the form

ds? = wy (1 — v*) ™ dv? + gapda?dz®. (24)

The conformal flatness of this metric can be shown to imply that the level
surfaces of v are umbilically embedded in ¥ [46]. It now follows quickly from
the field equations that the four-metric, Eq.(2), is the Schwarzschild metric.

B Postscript

Since this article was completed in early 2005 research on black holes and
uniqueness theorems has continued apace. The review of black hole the-
orems, [25], has been updated by new authors, [133]. This concentrates
on four dimensional stationary space-times. Uniqueness theorems for black
holes in higher dimensional space-times have recently been reviewed in [134].
The very important matter of astrophysical tests of the uniqueness of the
Kerr family of black hole solutions has received increasing attention. A brief
review of research on this topic is contained in [135].
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