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Abstract: In this comment on a recent paper by Dunajski a method
of generating solutions of the Einstein-scalar field equations from Einstein
metrics is presented. Two spherically symmetric examples are presented.
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In a recent paper,[1], Maciej Dunajski used the standard Kaluza-Klein
reduction ansatz from five to four dimensions to construct new four-metrics
which satisfy the Einstein-Maxwell-Dilaton field equations from Einstein
four-metrics. The aim of this comment is to point out a way in which
Lorentzian solutions of the Einstein-scalar equations can be similarly con-
structed from any known Lorentzian Einstein four-metric which admits a
non-null hypersurface orthogonal Killing vector field. The construction fol-
lows the same main lines as Dunajski’s but differs in some details. It leads
to Einstein-scalar four metrics which do not necessarily possess continuous
isometries. The zero rest-mass scalar fields are minimally coupled in the
standard (non-phantom) way and the cosmological constant is zero.

First let ds2
(4) be the line element of a Lorentzian four-metric on a four

dimensional manifold M , with signature (3,1), which admits a hyper-surface
orthogonal, non-null killing vector field K. It is assumed to be Einstein so
that it satisfies the equations

Gαβ = −Λgαβ. (1)

In coordinates adapted to K the line element takes the form

ds2
(4) = gijdxidxj + V (dx4)2, (2)

where K = ∂/∂x4and ∂/∂x4(gij) = ∂/∂x4V = 0. Two cases need to be
considered.

(i) The function V <0, the signature of gij is Euclidean and K is time-like.
(ii) The function V > 0,the signature of gij is (2,1) and K is space-like.
In the first case when V is replaced by −V the resulting Riemannian

metric also satisfies Equation (1) and it this metric that is employed in the
following construction. To emphasize this let |V | = U2. Now it is known
that any Einstein four-metric on M can be used to construct a Ricci flat
five-metric on M ×R, [2]. Here the Ricci- flat five-metric can be written as

ds2
(5) = ε(dx0)2 + (ax0 + b)2gijdxidxj + (ax0 + b)2U2(dx4)2. (3)

Here |ε| = 1 and a and b are constants with

a2 = εΛ/3. (4)

Consequently ε and a non-zero Λ must have the same sign. The five-
metric is Lorentzian, as is chosen to be the case here, when ε = −1 in case
(i) and ε = 1 in case (ii).
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Now, following Dunajski, this line element, with hypersurface orthogonal
Killing vector field ∂/∂x4, is identified with the standard form used in the
Kaluza-Klein reduction, that is with the metric form

ds2
(5) = exp(−2Φ/

√
3)ds2 + exp(4Φ/

√
3)(dx4)2. (5)

This leads to the identification of a new four-metric

ds2 = ε
∣

∣U(ax0 + b)
∣

∣ (dx0)2 +
∣

∣U(ax0 + b)3
∣

∣ gijdxidxj, (6)

and a scalar field

Φ =

√
3

2
ln

∣

∣U(ax0 + b)
∣

∣ . (7)

With this identification it follows automatically that the new Lorentzian
four-metric and scalar field satisfy the Einstein-scalar field equations, where
the zero rest-mass scalar field is conventionally and minimally coupled. An
Einstein-scalar solution obtained in this way, and the original Einstein metric
are both contained in a Ricci flat five-metric and are extracted from it via
different fibrations of the five manifold.

When Λ is non-zero the final four-metric does not necessarily admit a
Killing vector field. Henceforth this is the case that will be considered and
it will then simplify the formulae if the new coordinate y = ln |ax0 + b| is
introduced. It then follows that the five-metric is given by

ds2
(5) = exp(2y)[

3

Λ
dy2 + gijdxidxj + U2(dx4)2], (8)

the new four-metric is

ds2 = |U | exp(3y)[
3

Λ
dy2 + gijdxidxj], (9)

and the scalar field is

Φ =

√
3

2
(y + ln |U |). (10)

Simple illustrative applications of this procedure are to the Kottler and
Narai metrics with non-zero Λ. First consider the Kottler metric, [3], in the
static patch

ds2
(4) = −U2dt2 + U−2dr2 + r2dΩ2, (11)

where
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U2 = (1 − 2m

r
− Λr2

3
) > 0, (12)

dΩ2 = dθ2 + sin2 θdϕ2.

These coordinates are adapted to the two hypersurface orthogonal Killing
vector fields ∂/∂t and ∂/∂ϕ. It will suffice here to exhibit the procedure using
case (i) above with x4 = t. In this case the starting point is chosen to be
the Schwarzschild-anti-de Sitter family with Λ < 0. From the above results,
and writing y = T , it follows immediately that the spherically symmetric
Einstein-scalar solutions generated from this family are given by

ds2 =

∣

∣

∣

∣

1 − 2m

r
− Λr2

3

∣

∣

∣

∣

1/2

exp(3T )[
3

Λ
dT 2 +

∣

∣

∣

∣

1 − 2m

r
− Λr2

3

∣

∣

∣

∣

−1

dr2 + r2dΩ2],

(13)
and

Φ =

√
3

2
[T +

1

2
ln

∣

∣

∣

∣

1 − 2m

r
− Λr2

3

∣

∣

∣

∣

]. (14)

Next take as starting Einstein four-metrics the Narai family, [4], in the
form [5]

ds2
(4) = Λ−1[cosh2 tdr2 + dΩ2 − dt2]. (15)

with Λ > 0. These coordinates are adapted to the Killing vector fields ∂/∂r
and ∂/∂ϕ. By applying the general procedure as in case (ii) above, with
x4 = r and y = R, the spherically symmetric Einstein-scalar solutions

ds2 =
exp(3R) cosh t

Λ3/2
[−dt2 + 3dR2 + dΩ2], (16)

Φ =

√
3

2
[R + ln(

cosh t

Λ1/2
)], (17)

are generated from the Nariai metrics.
The solution generating method discussed in this paper is an addition to

earlier methods of generating Einstein-scalar solutions from known solutions.
Examples of such methods can be found in reference [6].

Acknowledgement

I would like to thank Maciej Dunajski for his comments and for suggesting
the introduction of the coordinate y.

4



References

[1] Dunajski, M. (2006) Einstein-Maxwell-Dilaton metrics from three-
dimensional Einstein-Weyl structures, Class. Quantum Grav. 23, 2833-
2840.

[2] Lidsey, J.E., Romero, C., Tavakol, R., Rippl, S. (1997) On Applications
of Campbell’s Embedding Theorem, Class. Quantum Grav. 14, 865-879.

[3] Kottler, F. (1918) Uber die physikalischen Grundlagen der Einsteinschen
Gravitationstheorie, Annalen der Physik 56, 401-462.

[4] Nariai, H. (1951) On a new cosmological solution of Einstein’s field equa-
tions of gravitation, Sci. Rep. Tohoku Univ. Ser. I 35, 62-67.

[5] Bousso, R. (2003) Adventures in de Sitter space, in The Future of Theo-

retical Physics and Cosmology: Celebrating Stephen Hawking’s 60 th birth-

day, eds. G.W. Gibbons, E.P.S. Shellard, S.J. Rankin (Cambridge Uni-
versity Press, Cambridge).

[6] Fonarev, O.A. (1995) Exact Einstein scalar field solutions for formation
of black holes in a cosmological setting, Class. Quantum Grav. 12, 1739-
1752.

5


