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Abstract

We explore a novel method to generate and characterize complex networks by means of

their embedding on hyperbolic surfaces. Evolution through local elementary moves allows the

exploration of the ensemble of networks which share common embeddings and consequently

share similar hierarchical properties. This method provides a new perspective to classify

network-complexity both on local and global scale. We demonstrate by means of several

examples that there is a strong relation between the network properties and the embedding

surface.
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1. Introduction

In recent years, it has become increasingly evident that a convenient way to study
complex systems constituted of many interacting elements is by associating to each
element a node and to each interaction a link between nodes, giving a network (or
graph). It has been widely noted that complex interconnected structures appear in a
wide variety of systems of high technological and intellectual importance. It has been
see front matter r 2004 Elsevier B.V. All rights reserved.
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pointed out that many such networks are disordered but not completely random
[1–4]. On the contrary, they have intrinsic hierarchies and characteristic organiza-
tions which are distinguishable and are preserved during the network evolution.
In particular, one of the principal feature of these networks is the fact that they
are both clustered and connected. For instance, an individual in a social
network has most links within his own local circle, yet each individual in
the world is only at a few steps from any other [5]. An example of a completely
clustered network is a triangular lattice on a planar surface: in such a network
each one of the n nodes is connected with its local neighbors only and the average
distance between two individuals scales as n1=2: This is a ‘large world’. On the
other hand, after Erdös and Rényi [6], we know that random graphs are closely
connected systems where the average distance scales as lnðnÞ: a ‘small world’.
Intermediate structures can be constructed from the planar lattice by adding links
between distant nodes making in this way short cuts. But such an insertion of a short-
cut on the triangular lattice has an important consequence: the network can no
longer be drawn on the plane without edge crossings; it is non-planar. The
embedding surface must be modified accordingly by creating a ‘worm hole’ which
connects two distant parts of the surface and through which the new link can ‘travel’.
Such ‘worm holes’ create short-cut tunnels in the (2D) universe transforming it into a
small world.

In this paper we explore the idea of a network that exists, grows and evolves
on a hyperbolic surface. The complexity of the network itself is in this way associated
with the complexity of the surface and the evolution of the network is now
constrained to a given overall topological organization. More precisely, we explore
the relation between the properties of a network and its embedding on a surface.
An orientable surface (an intersection-free, two-sided, two-dimensional manifold)
can be topologically classified in term of its genus which is the largest number
of non-intersecting simple closed cuts that can be made on the surface without
disconnecting a portion (equal to the number of handles in the surface). The
genus (g) is a good measure of complexity for a surface: under such a classification,
the sphere (g ¼ 0) is the simplest system; the torus is the next-simplest (g ¼ 1);
etc. To a given network can always be assigned a genus: defined to be equal
to the minimum number of handles that must be added to the plane to embed

the graph without edge-crossings. (Accordingly, a planar graph has genus 0
and it can be ‘minimally’ embedded on the sphere.) Therefore, our approach
works in two ways: it is a convenient tool to generate graphs with given complexity
(genus) and/or it is a useful instrument to measure the complexity of real-world
graphs.

The aim of the present paper is to emphasize why it is convenient to study
networks in term of their embeddings on a surface. We find several attractive
features of this approach: (1) it provides new measures to characterize complexity;
(2) it gives a locally planar representation; (3) it provides a hierarchical ensemble
classification; (4) it allows the application of topologically invariant elementary
moves [7–9]. In addition, let us stress that any network can be embedded on a
surface, therefore: why not?.
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2. Hyperbolic embeddings

In this section we discuss the embeddings of undirected, simple graphs (with at
most one edge connecting any two vertices and each edge connecting two vertices) on
orientable surfaces of genus g. First consider the complete graph with n vertices (Kn).
In Kn; all possible links are present and each node is connected with all other n � 1
nodes. Evidently, any graph with n nodes is necessarily a sub-graph of Kn: It is
known [10–12] that an embedding of Kn is always possible on an orientable surface
Sg of genus gXg�; with

g� ¼
ðn � 3Þðn � 4Þ

12

� �
(1)

(for nX3; where dxe denotes the ceiling function which returns the smallest integer
number Xx). For n47 one has g�41; and hyperbolic surfaces are needed to embed
the complete graph. When n ¼ 0, 3, 4 or 7 ðmod12Þ the quantity ðn � 3Þðn � 4Þ is
divisible by 12 and the embedding of Kn on Sg� is a regular triangular tiling.

Eq. (1) states that any graph with n nodes (any sub-graph of Kn) can be embedded
on a surface of genus larger of equal than g�: However sub-graphs of Kn might be
embedable on surfaces with smaller genus. The embedding of the complete graph on
Sg� has the desirable feature of local planarity. Note, however, that this local
simplification is achieved by introducing complexity in the global surface (g� scales
with n2). Constructions of embeddings of sub-graph of Kn on topologically simpler
surfaces (with lower genus than g�) are therefore required.

In this paper we discuss three distinct constructions: bottom-up; top-down and
dynamical. These methods (described below) are algorithmically very different, yet
they can produce the same final structures.

The bottom-up approach is an iterative construction on a surface Sg of given genus
g: It starts from a set of n unconnected nodes and connects two nodes if and only if
the resulting graph can be embedded on Sg: This process proceeds iteratively and
terminates with either a triangular graph containing 3n þ 6ðg � 1Þ links (when
gog�), or the complete graph Kn (when gXg�). This construction gives networks
with a maximum number of links for a graph with n vertices on Sg: Less connected
graphs can be constructed by edge-pruning or by ending the construction process at
an earlier stage. Applications of this method to financial market data for the case
g ¼ 0 are discussed in Ref. [13] (interest rates data) and [14] (stock market data).

The top-down construction starts from the embedding of Kn on Sg� : We then roll
this multi-handled surface on its (topologically planar) universal cover. Most
commonly, the universal cover lies in the hyperbolic plane H2 (except where np7)
[15]. The resulting pattern exhibits discrete symmetries, characteristic of a regular
tiling of H2 [15]. In particular the special cases n ¼ 0; 3; 7 (mod 12) lead to regular
tilings of H2 with Schläfli symbols f3; n � 1g [16] . This procedure effectively ‘unzips’
the multi-handled surface, and forms multiple planar copies in the hyperbolic plane.
An example for n ¼ 16 (related to the case in Ref. [13]) is shown in Fig. 1. In this case
g� ¼ 13 (Eq. 1) and the figure represents the embedding of K16 by unfolding S13 on
the universal cover. This is one possible embedding among the exponentially large



ARTICLE IN PRESS

Fig. 1. An embedding of K16 (with nodes labelled from 1 to 16) formed by unfolding S13 onto its universal

cover (the hyperbolic plane) by giving multiple copies of nodes. The dual graph (white edges) is also

drawn.
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class of allowed embeddings [19]. Once we have formed the universal cover, we can
proceed in the inverse direction by edge pruning H2 followed by re-gluing the
universal cover into a simpler surface, Sg [17,18].

The dynamical construction starts from a simple seed network on Sg and then
allows it to evolve by elementary moves that re-wire links and add or remove nodes
under the constraint that the resulting network remains a simple graph embedded on
Sg: This approach allows us to construct ensembles of graphs which share a common
embedding. We find that the properties of the resulting graphs are related to the
properties of Sg: This is discussed in detail in the next section.
3. Elementary moves

Here we further restrict our investigations to triangular embeddings. Consider the
effect of cascades of elementary moves of two types: edge switching (T1) and vertex

insertion and removal (T2) [9]. The first operation is a local elementary move which
switches the connections among four nodes as indicated in Fig. 2. The operation
switches neighbors: two first-neighboring nodes become second-neighbors (i; j in the
figure), whereas two second-neighbors become first-neighbours (k; l in the figure).
This T1 operation can be iterated allowing the exploration of a large class of
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Fig. 2. Elementary moves on a triangulation: Edge switching (T1) and Vertex insertion and removal (T2).
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triangular embeddings on Sg: However, certain triangulations of oriented surfaces
cannot be transformed into each other by T1 operations alone. The second
elementary operation (T2) is the insertion of a vertex in the middle of an existing
triangle and its inverse, as drawn in Fig. 2. It is known that any triangulation on Sg

can be transformed into any other by a sequence of T1 and T2 elementary moves
[20–22]. Applications of this technique to the case g ¼ 1 are discussed in Refs.
[9,23,24].
4. T1 networks

Consider next examples of large triangulations (containing up to n ¼ 105 nodes)
embedded on surfaces of various genera. For convenience, we consider values of g

between 0 and n+1, as the latter bound allows networks with integer connectivity
(18) irrespectively of their size. These networks are generated via the ‘dynamical
method’ introduced above. We start with a seed-graph and then apply T1 moves at
random. The result is a disordered network. Remarkably, for the case g ¼ 0 the
degree distribution is known analytically (nb1) [25–28]: PðkÞ ¼ 16ð 3

16
Þ
k
ðk � 2Þð2k �

2Þ!=½k!ðk � 1Þ!�; which, in the tail region, is well described by an exponential law
PðkÞ 
 P0 expð�akÞ with a 
0.3. Such theoretical behavior is confirmed numerically
by our simulations using the ‘dynamical’ construction. At low genus, the degree
distribution decreases exponentially with k (linear trend in log-normal scale), as
shown in Fig. 3(a). However, it is also evident from the figure that when g increases
the coefficient a decreases and the distributions’ tails become ‘fatter’. Moreover,
log–log plots of the degree distributions of networks embedded on high-genus
surfaces reveal power-law behaviors for small-medium values of the connectivity
(Fig. 3(b)). We find in those cases very good fits of the distributions to the functional
form: PðkÞ 
 P0k�b expð�akg

Þ: (For the case in Fig. 3 with n ¼ 10 000 and g ¼ n þ 1;
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Fig. 3. (a) Degree distributions (log-normal scale) resulting from the numerical generation of

triangulations on manifolds with different genera. (b) Degree distributions (log–log scale) for the case

g ¼ n þ 1 over several different simulations.
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a ’ 4 10�4; b ’ 1 and g ’ 1:9:) This ‘stretching’ of the degree distributions away
from exponential behavior (characteristic of low genus) towards power-law behavior
(with an exponential cutoff) suggests the presence of a phase-transition when the
number of handles in the surface becomes comparable with the number of
nodes.Indeed, it was shown in Ref. [9] that the behavior at g ¼ 1 can be retrieved
easily by modelling the system as non-interacting nodes constrained by a global
condition on the average connectivity (which must be equal to 6 at g ¼ 1). On the
other hand, networks embedded on topologically complex surfaces allow longer-
range correlations to play a crucial role in the system organization, leading to non-
Boltzmann distributions.

Another important effect associated with the variation of genus of the embedding
surface concerns the intrinsic (or fractal) dimension of the network. We infer this
dimensional measure from the average length (hji) of the geodesic paths on the
network between any pair of nodes. If this topological length scales with the total
number of nodes (the ‘volume’) as hji / n1=d ; one can define an intrinsic dimension d

for the system. (This definition is analogous to standard scaling laws in d-
dimensional lattices.) Another possible definition of intrinsic dimensionality follows
from analysis of the average number of nodes (nj) at a given geodesic distance (j)
from a central node [29]. Indeed, in systems with finite intrinsic dimensionality, we
expect such a topological ‘perimeter’ to grow with topological radius as: nj / jd�1:
Clearly, there are various possible definitions for the intrinsic dimension and, in
general, they can lead to different results. However we verified that the two
definitions above lead to the same result for all the cases examined. Interestingly,
results associated with the application of the Regge calculus in 2D quantum gravity
[30] show that for g ¼ 0 the intrinsic dimension of random triangulations must be
d ¼ 4: We verified that our numerical simulations for the case g ¼ 0 are very well
described with the functional forms hji ¼ c1n1=d þ c2 and nj ¼ c3jd�1 þ c4 with d ’ 4:
We have also verified that the same forms hold for all the small-genus cases (when
g5n), again with d 
 4: Therefore, we affirm that for small genus the system has a
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finite intrinsic dimension and it behaves as a large world. At the opposite limit we
know that for very high genus—when g� is neared and the network approaches Kn—
we attain ‘saturation’: hji 
 Oð1Þ: We have detected a critical region, in the vicinity of
g 
 n; where the intrinsic dimension diverges. In this region we observe that the
system becomes a small world with: nj ¼ a1 expða2jÞ þ a3 andhji ¼ a4 lnðnÞ þ a5: We
expect to observe another transition to ultra-small worlds (hji 
 lnðlnðnÞÞ) when the
genus approaches g�: But this will be the topic of a forthcoming paper.
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