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Summary. — The magnetic response of a simple three-dimensional Josephson
junction network is studied. The model network represents the circuital equivalent of
a physical system consisting of eight spherical grains located at the vertices of a cube.
We derive the equations for flux transitions in the system, and determine the lower
threshold field.
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1. — Introduction

The transport critical current in high-T, superconducting systems is considerably
limited by the microstructural characteristics of these materials [1]. Indeed, if we
schematize these systems as a collection of weakly-coupled superconducting islands,
we may adopt Josephson junction network models to describe their electrodynamic
response. With the aid of these models one can show that the maximum Josephson
currents of the single junctions are natural upper bounds for the transport critical
current [2]. Even though granularity in high-T, superconducting systems plays against
large scale and practical applications of these materials, new and interesting
phenomena may arise from the study of the magnetic properties of granular systems.
For example, one can show that the particular multiply connected structure of granular
samples may give rise to the so-called Wohlleben effect [3, 4], which is sometimes
referred to as paramagnetic Meissner effect. As far as the magnetic properties of these
materials are concerned, one wusually adopts one-dimensional (1D)[5,6] or
two-dimensional (2D) [7-9] junction arrays. Only few recent works have appeared on
three-dimensional (3D) Josephson junction arrays [10, 11].

In the present work we study the magnetic response of a particular 3D Josephson
junction network: twelve junctions, each one located at the midpoint of a cube side. This

(*) Paper presented at the “VIII Congresso SATT”, Como, 1-4 October 1996.
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Fig. 1. — a) Eight spherical superconducting grains located at the vertices of a cube. b) Equivalent
circuital model consisting of twelve Josephson junctions and inductors located on the sides of the
cubic structure.

simple network represents the circuital equivalent of a physical system consisting of
eight spherical grains located at the vertices of a cube. In fig. 1 we give a schematic
view of the system we are considering. Therefore, in the following section, we give a
general procedure to carry out, with the aid of the Resistively Shunted Junction (RSJ)
model, the equations of the motion which govern magnetic flux transitions in the
system. In the third section we numerically integrate the resulting system of nonlinear
differential equations in order to detect the lower threshold field in the case of external
fields applied orthogonally to one of the cube faces and at T =0 K. Generalization to
the finite temperature case is given in the fourth section, and conclusions are drawn in
the last section.

2. — The model

The circuital model in fig. 1 consists of twelve inductively coupled Josephson
junctions (JJs), each junction simulating the weak superconducting coupling between
two adjacent grains. The inductors are introduced to take account of the self fields
generated by the circulating currents.

To each JJ, labelled according to a standard tensorial notation, we associate the
gauge invariant superconducting phase difference ¢; at the contact points between
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grains, where the indices i, j, k take on the values 0, 1, and 2, depending on the spatial
position of the junctions themselves. Let us denote the loop current circulating in a face
parallel to the (n&)-plane, with (&) = (yz),(xz),(Xy), as I, where | takes on the
values 0 and 1. For example, the quantities Iy, and I, denote the loop currents seen
to flow in the counterclockwise direction by an external observer in the lower and
upper faces of the cube parallel to the x-y plane, respectively. The flux linked to the
same face will be written as @),

By introducing the normalized flux variable W = ®/®,, and by imposing fluxoid
guantization for each closed superconducting loop, we write

1) 2% (y7)i = 27N(yz)i + Qia T Piro T Pin + Pinz
2 27 ()] = 27Ny — Pojr T P1jo — P2ji T Pijo s
(3) 278W (xy)ik = 2Nk — Portk — P10k — P21k — P 12k »

where the n's are integers, i, j, k=0, 2 and i = i/2, j = j/2, k = k/2.
The total flux @, can now be written as the sum of the induced flux and the

externally applied flux ®¢, = uoH- S,z where H is the applied field vector and S,;); is
the area vector pertaining to the (n&)i cube face, so that

) Dpeyi = E ZM(,@. L) +,U0H S(ng

where M{%)} are the mutual inductance coefficients.
We adopt the RSJ model introducing the non-linear Josephson operator O,
defined as

®) Ogy () =

2 R dt IijIn()
where the resistive parameter R is taken to be the same for all JJs and the quantity I,
is the maximum Josephson current of the (ijk)-junction. In this way, we can write the
equations of the motion for the twelve phase variables as follows:

(6) OJljk((P 1) = Ny = Ny »
(7 05 (@ i1k) = Vo = lyoyi
C)) OJijl((Pijl) = lxpj = lyoi s

where, again, i, j, k=0, 2and i = i/2, j = j/2, k = ki2.

We notice that the currents appearing on the right hand side of egs. (6)-(8) are
implicitly defined by eq. (4). We can thus invert eq. (4) and express the flux variables in
terms of the superconducting phases, in such a way that egs. (6)-(8) become a system of
coupled differential equations in the ¢, variables. In order to invert egs. (4), however,
we need to specify the mutual inductance coefficient matrix, which, for symmetry
reasons, we take to be

Jéij Lo— (1—5ij) Mep, if (uv) = (n8),

©) M2 = _
T - M, if (uv) = (5E),
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where L,, My, and M; are, respectively, the effective values of the self-inductance
coefficient relative to each loop, the mutual inductance coefficient relative to mutually
orthogonal faces, and the mutual inductance coefficient relative to parallel faces.

3. — Stationary magnetic states

In the present section we show the outcome of the integration process carried out
on eqgs. (6)-(8). In order to obtain the stationary magnetic states of the system at
T=0K after ZFC (n(si; =0 in egs. (1)-(3)), we adiabatically increase the external
forcing term W, = u HS,/®,, where S, is the area of a single face, for a system of
perfectly identical JJs with maximum Josephson current 1, from zero to an arbitrary
maximum value with an incremental step of AW,,. The external field is taken to be
parallel to the z-direction. After each increment of the forcing term, the equilibrium
values of the phase variables are found, and the corresponding values of the fluxes are
derived through the fluxoid quantization conditions (egs. (1)-(3)). A standard fourth
order Runge-Kutta algorithm is used, and the results are shown in fig. 2, where the
fluxes linked to the cube faces are reported as a function of W, for three different
values of the parameter o= oL /Py, and for the following values of the model
parameters: My/Ly;=0.2, and Mp/L,=0.1. The parameter (,, in particular, can be
compared to the usual SQUID parameter, and determines the ranges of reversible and
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Fig. 2. — Flux linked to the six cubic faces as a function of the normalized applied flux W, for
various (3, values.
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irreversible magnetic behavior of the system. As a matter of fact, as in the simple
SQUID case, there exists a limiting ,-value S, above which the magnetic behavior of
the system goes from reversible to irreversible. Therefore, if 5, > 3., a lower threshold
field Hgy,, for irreversible flux penetration appears in the W vs. W, diagrams.

We can compute the . value in terms of the constants My and L,. Indeed, from
fig. 2, it is evident that W,,); = 0 if (uv) # (xy), so that, by rewriting the equations of
the motion and noticing that we can choose one independent phase, the resulting
differential equation for the flux W, linked to the upper face of the cube can be written
as follows:

(10) W, + Bsin (7P, /2) = W, ,

where 8 = ,(1 + Mp/L,). The 8, value is obtained by taking the W, derivative of the
above expression and looking at the minimum value of 3, for which this derivative can
be zero. We therefore find 8, = 2/(n(1 + Mp/Ly)).

From fig. 2 we can see how this crossover appears. Indeed, from fig. 2a, in which
Bo<p., no discontinuity appears in the W vs. W, curves. In fig. 2b and 2c, instead, we
notice the appearance of a threshold field value for flux penetration in the x-y
plane.

4. — Magnetic states at finite temperatures

In order to extend our analysis to the finite temperature case, we should add a
white noise current term to each branch in the cubic structure. This is done by
summing a stochastic variable f;(T) to the right hand side of each equation of the
motion for the phase variables (egs. (6)-(8)). By previous analyses on Josephson
junction arrays, some of the authors [12] showed that the resulting behavior of the
system could be obtained by modifying the characteristic intrinsically defined
parameters of the model (in this case the parameter ;). In this way, an additional
extrinsic temperature dependence, coming from thermal fluctuations, is added to the
intrinsic temperature dependence of f,, essentially coming from the maximum
Josephson current term 1. This leads us to consider an effective parameter S .(T),
which may take account of thermal fluctuations in the system. Given the monotonically
decreasing T-dependence of 1, [13], the effective parameter [ will preserve the same
characteristics. On the basis of this, let us now derive an analytic expression for the
threshold field value in terms of 5, compare the analytic prediction with the numerical
result, and draw information on the functional dependence of the threshold value
IIJQX=#0HQC1 Sy/®, on the temperature T. By starting from eq. (10) and by setting
(d/d¥,) W, =0, we find, after solving simultaneausly the two equations:

(11) Wl = ZsinT (1 — 1/ B2)2)?) + B (1 — 1B I2)? )2 .

SHEN)

Therefore, W, is a monotonically increasing function of 3, since 5 depends linearly
on f,. It follows, from what has been previously said, that W., is a monotonically
decreasing function of T.
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5. — Conclusion

We studied the stationary magnetic states of a simple three-dimensional Josephson
junction network: a cube with twelve junctions. We derived the dynamical equations for
flux transition for an externally applied magnetic field H in the direction orthogonal to
one of the cube faces and for T = 0 K. We reported the fluxes linked to the cube faces as
a function of the applied flux W,, for three different values of the parameter ,, hamely
Po=0.4,0.8 and 3.0. While for g, < ., discontinuity appears in the W vs. ¥, diagrams,
in the case B,>p., a lower threshold field Hy, for irreversible flux penetration
appears. Finally, we generalize our analysis to the finite T case and qualitatively
discuss the temperature dependence of WL, = u, Hge1 So /Do
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