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t An outline of Morita's equilibrium ensemble approa
h to disordered systemsis given, and hitherto unnoti
ed relations to other, more 
onventional approa
hes in thetheory of disordered systems are pointed out. It is demonstrated to 
onstitute a general-ization of the idea of grand ensembles and to be intimately related also to 
onventionallow{
on
entration expansions as well as to perturbation expansions about ordered refer-en
e systems. Moreover, we draw attention to the variational 
ontent of the equilibriumensemble formulation. A number of exa
t results are presented, among them general so-lutions for site{ and bond{ diluted systems in one dimension, both for un
orrelated, andfor 
orrelated disorder.1 Introdu
tionThe present 
ontribution is 
on
erned with the statisti
al me
hani
s of systems withquen
hed randomnes. A

ording to a seminal paper by Brout [1℄, the relevant thermo-dynami
 potential for the des
ription of su
h systems is the average of the free energy ofthe system over the distribution q(�) des
ribing the disorder 
on�gurations �,fq = �(�N)�1 hlnZN (�)iq : (1)Here N denotes the system size, and ZN (�) is the partition fun
tion of a system of sizeN at �xed disorder 
on�guration �.The evaluation of the quen
hed free energy (1) is diÆ
ult for at least two reasons. First,in virtually all 
on�gurations � 
ontributing to the average, the system is not translation-ally invariant | a 
ir
umstan
e invalidating all 
onventional 
al
ulational tools relyingon su
h invarian
e. Moreover, averaging the logarithm of the partition fun
tion usuallypre
ludes any useful fa
torization of the averaging pro
ess even in situations where su
hfa
torization is possible when 
onsidering the average of ZN (�) itself.�Supported by a Heisenberg fellowship 1



For the reasons just outlined only few exa
tly solved models of systems with quen
heddisorder are known. Where solutions of su
h models have been obtained, su

ess has asa rule been due to simplifying features, su
h as one{dimensionality of the models (see [2℄for a re
ent overwiew) or of the disorder type [3℄, analyti
 stru
tures available in spheri
almodels [4℄ or in�nite dimensionality where mean{�eld approximations are exa
t (see, e.g.[5℄).Dis
omforting to a perhaps even greater degree is the fa
t that 
onventional asymptoti
methods for the study of phase transitions and 
riti
al phenomena, su
h as series expan-sions, renormalization group or Monte{Carlo 
al
ulations, have in several 
ases pro
u
ed
on
i
ting and sometimes even spurious results, when applied to disordered systems. Thisbeing so, alternative approa
hes are 
learly wel
ome.The present 
ontribution is devoted to one su
h alternative, whi
h is at the same timevenerable, not well known and still, we believe, promising. The method is originally dueto Morita [6℄. The main idea is to treat the 
on�gurational degrees of freedom � on thesame footing as the dynami
al variables proper, and to supplement the Hamiltonian of thedisordered system by a disorder potential �(�) whi
h is determined su
h that 
on�gurationaveraging as implied by (1) be
omes part of the Gibbs average in an enlarged phase spa
e.By this devi
e, it is hoped, the full ma
hinery of equilibrium statisti
al physi
s is madeavailable for the study of systems with quen
hed randomness. The idea of an equivalentequilibrium ensemble naturally lends itself to the formulation of systemati
 approximatives
hemes. The perhaps most natural was already suggested by Morita [6℄; it starts out fromthe so{
alled annealed approximation, whi
h is then improved by imposing an in
reasingnumber of 
onstraints on the thermal motion of the 
on�gurational degrees of freedom.Thus, as pointed out by Falk [7℄, annealed approximations, su
h as employed by Thorpeand Beeman [8℄ to determine phase boundaries in bond{disordered 2{D Ising models,
onstitute just the �rst step wihtin Morita's restri
ted annealing s
heme.The Morita approa
h is natural enough to have been used, re
onsidered, or redis
overedseveral times. Thorpe [9℄ applied essentially this idea to improve upon annealed phaseboundaries obtained earlier [8℄, a topi
 taken up again somewhat later by George et al.[10℄, who fell on virtually the same set of ideas, arguing from a somewhat di�erent point ofview, though. Restri
ted annealing has been dis
ussed in 
onne
tion with spin{glasses byToulouse and Vannimenus [11℄, who also drew attention to formal similarities with latti
egauge theories.Expli
it referen
e to Morita's original paper is made in [12℄ { [17℄. Sobotta and Wagner[12℄, restri
ting themselves to bimodal disorder (see below), streamlined the formal pre-sentation of the approa
h, and applied it in 
onjun
tion with the renormalization groupand the "{expansion to study spin{diluted ferromagnets near dimension 4 [13℄. Huber [14℄dis
usses the thermodynami
 
ontent of the Morita s
heme and derives a normalization
ondition for the disorder potential �(�) from thermodynami
 
onsisten
y{
onsiderations.In [15℄, [17℄, K�uhn 
ombines restri
ted annealing with the phenomenologi
al renormaliza-tion group method to study the 
riti
al behaviour of the 2{D spin{diluted Ising model,while K�uhn et al. [16℄ apply 
onstrained annealing to provide an exa
t solution of vanHemmen's spin{glass model [18℄.Somewhat earlier restri
ted annealing was redis
overed by S
hwartz [19℄ and put for-2



ward in the debate about the lower 
riti
al dimension of the random �eld Ising model(RFIM), in
identally produ
ing results 
ompatible with the more re
ent rigurous proof ofstability of ferromagnetism in the three dimensional RFIM [20℄. The most re
ent redis
ov-ery of the method is due to Serva and Paladin [21℄, who used it to study the mean{�eldversion of the RFIM, whi
h is a
tually somewhat simpler that the model 
onsidered in[16℄, and who produ
ed approximate numeri
al solutions of the RFIM in 1{D.The purpose of the present paper is to give an outline of the formal and systemati
aspe
ts of Morita's equilibrium ensemble approa
h to disordered systems. Se
. 2 summa-rizes for future referen
e the general theory, and formulates 
onstrained annealing as the
anoni
al approximative s
heme that derives from it. In this 
ontext it is emphasized thatthe equilibrium ensemble approa
h is nothing but a generalization of the grand ensem-ble idea [17℄. Alternatively, it 
an be looked upon as a method for obtaining variationallower bounds for quen
hed free energies. In Se
. 3 we spe
ialize to bimodal bond{ or site{disorder, and point out a 
onne
tion to a di�erent well established set of ideas, namelythe relation to 
onventional low{
on
entration expansions and to perturbation expansionsabout homogeneous referen
e systems. For systems with bond{ or site{dilution additionalinformation about the exa
t disorder potential �(�) 
an be obtained whi
h is used amongother things to provide exa
t general solutions to the 1{D 
ase. The equilibrium ensembleapproa
h is well suited to study systems with 
orrelated quen
hed disorder. Se
. 4 developsthis point to some extent. In Se
. 5 we brie
y indi
ate a range of alternative possibilitiesto formulate trun
ation and approximation s
hemes within the general approa
h, and weend with an outlook and 
on
luding remarks. Constrained annealing as a method to studythe thermodynami
s and 
riti
al behaviour of disordered Ising models will be taken up ingreater detail in an a

ompanying paper [22℄, to be referred to as II in what follows. Ashort version 
olle
ting the main results of that study has appeared elsewhere [17℄. The
ontents of Se
. 2 are not entirely new. Large parts of the general theory, in parti
ularSe
s. 2.1{2.4, have more or less expli
itly appeared before | notably in [6℄, [12℄. What we
an perhaps 
laim originality for, is for pointing out heretofore unnoti
ed 
onne
tions toother sets of ideas (to grand 
anoni
al ensembles, to variational bounding of free energies,and to low{
on
entration and perturbation expansions) as well as for the 
olle
tion ofexa
t results presented in Se
s. 3 and 4.2 General Theory2.1 Equilibrium Ensemble Approa
h to Disordered SystemsIn order to avoid the 
ompli
ations asso
iated with the evaluation of quen
hed averages,Morita [6℄ suggested to introdu
e an equivalent ensemle in whi
h 
on�gurational averagingbe
omes part of the thermal averaging pro
edure in an enlarged phase spa
e that is de�nedover both, the 
on�gurational degrees of freedom �, and the dynami
al variables proper.This is a
hieved by introdu
ing a \�
ti
ious" disorder potential �(�) whi
h is added tothe system Hamiltonian H(�j�) !H�(�; �) = H(�j�) + �(�) (2)3



and 
hosen su
h that the system des
ribed by H� will have thermodynami
 equilibriumproperties identi
al to the nonequilibrium properties of the quen
hed system.1 In a �rststep, therefore, it is required that the Gibbs-Boltzmann distribution generated by H�p�(�; �) = 1Z� exp[��H�(�; �)℄ (3)be equal to the non{equilibrium distributionpq(�; �) = q(�)Z(�) exp[��H(�j�)℄ (4)des
ribing the joint statisti
s of 
on�gurational and dynami
al degrees of freedom in anensemble of quen
hed systems. That is, one demandsp�(�; �) = pq(�; �) (5)for all (�; �). This equation 
an be solved for � to yield��(�) = � ln[q(�)=Z(�)℄ � lnZ� : (6)We shall in what follows refer to (6) as to the Morita equation. It expresses the fa
t that anequivalent equilibrium ensemble exists. As long as one is interested only in its probabilisti

ontent, Eqs. (2), (3) and (6) are all one needs in prin
iple. In pra
ti
e, of 
ourse, not mu
hhas been gained so far. The translation of the problem of 
on�guration averaging in systemswith quen
hed randomness into the language of an equivalent equilibrium ensemble ispurely formal. It does not so far help to 
ir
umvent any of the diÆ
ulties for whi
h it wasinvented to begin with. To use the idea in pra
ti
e, one has to �nd a representation forthe potential �(�), whi
h is adapted to the given disorder problem, and whi
h 
an be thestarting point for the 
onstru
tion of systemati
 approximation s
hemes.Before turning to this topi
 in the following subse
tion, let us address the thermody-nami
 
ontent of the equivalent equilibrium ensemble. It was pointed out by Huber [14℄,that due to the invarian
e of (6) under the transformation�(�) ! �(�) + �0 ; (7)Z� ! Z� exp[���0℄ ; (8)the disorder potential � and thus the equilibrium ensemle's partition fun
tion Z� are spe
-i�ed only up to arbitrary 
onstants �0 (
onstant in the sense that they do not depend onthe disorder 
on�guration �) , whi
h may, however, still depend on temperature, external�elds, 
oupling 
onstants, impurity 
on
entration and so on. For the probabilisti
 
ontentof the theory, this need not be a point of 
on
ern. If, however, one also demands thatF � = ���1 logZ� (9)be identi�ed with the free energy of the equivalent equlibrium ensemble, a normalizationis 
learly needed. It was demonstrated by Huber [14℄ that thermodynami
 
onsisten
y |1Here and in what follows, we suppress indi
es signifying the system{size dependen
es of various quan-tities, in order to simplify notation. 4



equality of probabilisti
 and thermodynami
 de�nitions of internal energy, entropy, andother thermodynami
 fun
tions involving derivatives of F � up to �rst order in temperatureand �elds | requires the 
on�guration average of � to vanish,h�(�)iq =X� q(�)�(�) = 0 : (10)Indeed, with this 
ondition it follows from (6) that��F � = lnZ� = hlnZ(�)iq � hln q(�)iq ; (11)so that F � gives the quen
hed free energy plus a 
ontribution whi
h is easily identi�edwith an entropy of mixing,k�1B S0 = �hln q(�)iq = �X� q(�) ln q(�) : (12)Sin
e this extra 
ontribution is independent of temperature and external �elds, it is ir-relevant for thermodynami
s. With the normalization 
ondition imposed, the disorderpotential � reads ��(�) = � "ln q(�)Z(�) � �ln q(�)Z(�)�q# ; (13)whi
h shows that a full spe
i�
ation of � requires the 
omputation of the quen
hed freeenergy | pre
i
ely the quantity the 
omputation of whi
h the equilibrium ensemble ap-proa
h was invented to fa
ilitate, not to speak of the diÆ
ulties of solving or analysingmodels with a 
ontribution to the potential energy as 
ompli
ated as (13). On the otherhand Eq. (13) shows that, having 
omputed a properly normalized �(�), it suÆ
es toevaluate it for a simple homogeneous 
on�guration � to obtain essentially the Brout freeenergy.2.2 Constrained Entropy MaximizationIn order to introdu
e an alternative and more expli
it representation of the disorder po-tential �, whi
h 
an serve as a starting point for systemati
 approximation s
hemes, it isadvantageous to re
all Mazo's [23℄ information-theoreti
 justi�
ation of Brout's averagingpres
ripton.The distribution pq(�; �) whi
h reprodu
es Brout's averaging pres
ription for the freeenergy 
an a

ording to Mazo be derived from Jaynes' information{theoreti
 approa
h tostatisti
al me
hani
s [24℄. That is, it is given as the unique distribution whi
h maximizesthe entropy fun
tional S[p℄ = �kBX�;� p(�; �) ln p(�; �) (14)under the 
onstraintshH(�j�)ip =P�;� p(�; �)H(�j�) = E (15)
Æ(� � �0)�p =P�;� p(�; �)Æ(� � �0) = q(�0) ; 8 �0 : (16)5



Eq. (15) �xes the average energy of the system, while (16) demands that the sear
h formaximizing distributions is restri
ted among those 
ompatible with the a{priori distri-bution q(�) 
hara
terizing the disorder. Introdu
ing Lagrangian multipliers �kB� andkB(�(�) + 1) to enfor
e the 
onstraints, one obtains pq(�; �) de�ned byS[pq℄ = maxp nS[p℄; hH(�j�)ip = E and 
Æ(� � �0)�p = q(�0) 8 �0o (17)in the form pq(�; �) = exp[��H(�; �) + �(�)℄ : (18)To satisfy (16), one needs exp[�(�)℄ = q(�)Z(�) ; (19)where Z(�) is the partition sum at �xed disorder 
on�guration �, so that (18) does, indeed,agree with (4), and we have seen in the previous subse
tion that it 
an be interpreted asan equilibrium distribution p� in an enlarged phase spa
e.2.3 Alternative Formulation of Constrained Entropy Maximization (Bi-modal Disorder)The alternative representation of � announ
ed above is obtained by repla
ing the 
on-straints (16) in the above entropy{maximization pro
edure by an equivalent set of 
on-straints, namely by the requirement that the sear
h for maximizing distributions is re-stri
ted to those whi
h reprodu
e the 
omplete set of moments of q(�).To be spe
i�
, and to keep notation and formulae as trasparent as possible, let us �rst
onsider the 
ase of systems with bimodal site (bond) disorder, in whi
h a random variableasso
iated with ea
h site (bond) of the latti
e 
an only take two values. We shall explainthe ne
essary modi�
ations to treat more general types of randomnes in Se
. 2.5 below.Bimodal disorder is 
onveniently des
ribed in terms of site (bond) o

upation numberska = ka(�) whi
h take the values 0 or 1, if on the a{th site (bond) one or the other ofthe two possible realizations of the disorder is attained in the 
on�guration �. The setof moments of q(�) is given by the expe
tation under q(�) of all possible produ
ts ofo

upation numbers ka, f! = *Ya2! ka(�)+q ; ! � � ; (20)where ! ranges through all subsets of the set � of sites (bonds) of the latti
e, in
ludingthe empty set. It is useful introdu
e o

upation numbers for the sets ! throughk!(�) = Ya2! ka(�) ; (21)with k;(�) � 1, and to identify � with the set of verti
es (bonds) for whi
h ka = 1, thatis, � = fka; a 2 �g � fa 2 �; ka = 1g. This allows to writef! = hk!(�)iq = X���! q(�) : (22)6



In the present 
ase, the equivalen
e of the system of moments f! and the distribution q(�)follows dire
tly from the invertibility of (22),q(�) = X!!��(�1)j!j�j�jf! ; (23)where j!j and j�j denote the size of the sets ! and �, respe
tively. The set of moments
an be used to reformulate the 
onstrained entropy maximization, by repla
ing (16) withhk!(�)iq =X�;� p(�; �)k!(�) = f! ; ! � � : (24)Sin
e (16) and (24) are equivalent sets of 
onstraints, one 
an alternatively obtain pq(�; �)through S[pq℄ = maxp nS[p℄; hH(�j�)ip = E and hk!(�)ip = f! ; ! � �o : (25)Denoting the Lagrangian multipliers that enfor
e (15) and (24) by �kB� and kB(�!+Æ!;;),one obtains the maximizing distribution pq in the formpq(�; �) = exp h� �H(�j�) + X!�� �!k!(�)i : (26)Writing �; = � lnZ; (27)one gets pq(�; �) = 1Z exp h� �H(�j�) + X;6=!�� �!k!(�)i ; (28)where the �!, ! 6= ;, must be determined su
h that pq satis�es (24) for the set of momentsof the distribution q(�) des
ribing the disorder. Thus, an expli
it representation of �(�)in terms of weighted sums of produ
ts of o

upation numbers has been obtained. Therepresentation (28) of the distribution pq(�; �) has been advan
ed already by Morita [6℄,in a more transparent way, though, by Sobotta and Wagner [12℄.Note that Z has the formal appearan
e of a generalized grand partition sum, withgeneralized 
hemi
al potentials given by �! = ��1�!. The 
orresponding generalized grandpotential is 
 = ���1 lnZ ; (29)and one has f! = hk!i = � �
��! : (30)Returning to the general 
onsiderations of the previous subse
tion, we realize that in theform in whi
h the disorder potential appears in (28),��(�) = � X;6=!�� �!k!(�) ; (31)7



it does not satisfy the normalization 
ondition (10). To enfor
e it, one 
hanges � a

ordingto ��(�) ! � X;6=!���!(k!(�)� f!) : (32)On the level of thermodynami
 potentials, this 
hange amounts to a Legendre{transformfrom the generalized grand potential to the 
orresponding free energy,
! F � = 
+ X;6=!���!f! = 
� X;6=!���! �
��! : (33)Finally, using (27), (33) and the fa
t that f; = 1 due to the normalization of p� = pq,one obtains an intriguingly simple representation of the equivalent ensemble's free energy,viz. ��F � = lnZ� = � X!���!f! : (34)Note that determining the �! su
h as to make p� satisfy the 
onstraints de�ning thedisorder distribution is tantamount to minimizing lnZ� with respe
t to the �!. Phraseddi�erently, it means minimizing lnZ� over a spa
e of fun
tions �(�) whi
h are of the form(32).2.4 A Canoni
al Approximative S
heme: Constrained Annealing (Bi-modal Disorder)The simpli
ity of (34) is, of 
ourse, purely formal and hen
e de
eptive. Nevertheless, some-thing non{trivial has been gained, namely an expli
it representation for the disorder po-tential �, together with a method to 
ompute it that immediately lends itself to theformulation of a systemati
 s
heme of approximations. This s
heme 
onsists of repla
ingthe full set (24) of 
onstraints by a subset whi
h requires the maximizing distributions toreprodu
e only a given subset of the full set of moments of q(�).Formally, let Q be a subset of the powerset P(�) of the verti
es or bonds of the latti
e,and de�ne pQ as the unique distribution that maximizes the entropy fun
tional (14) underthe 
onstraints hH(�j�)ip =P�;� p(�; �)H(�j�) = E (35)hk!(�)ip =P�;� p(�; �)k!(�) = f! ; ! 2 Q ; (36)that is, S[pQ℄ = maxp nS[p℄; hH(�j�)ip = E and hk!(�)ip = f! ; ! 2 Qo : (37)Introdu
ing Lagrangian multipliers �kB� and kB(�Q! + Æ!;;), ! 2 Q, one obtains themaximizing distribution pQ in the formpQ(�; �) = exp h� �H(�j�) + X!2Q�Q! k!(�)i : (38)8



Writing �Q; = � lnZQ ; (39)one observes that this takes the form of a generalized grand{
anoni
al distributionpQ(�; �) = 1ZQ exp h� �H(�j�) + X;6=!2Q�Q! k!(�)i ; (40)where one has to determine the �Q! = ��Q! su
h as to satisfy the 
onstraints (36). In orderto obtain the free energy 
orresponding to the Q{approximation, one has to enfor
e thezero{mean-potential 
ondition (10) by 
hanging �Q a

ording to��Q(�) ! � X;6=!2Q�Q! (k!(�)� fw) : (41)As above, this amounts to a Legendre transformation from the generalized grand potential
Q = ���1 lnZQ (42)to the 
orresponding free energy
Q ! FQ = 
Q + X;6=!2Q�Q! f! = 
Q � X;6=!2Q�Q! �
Q��Q! : (43)On
e more, we have a simple representation for the free energy,��FQ = lnZQ = � X!2Q�Q! f! : (44)Again, to determine the �Q! so as to make pQ satisfy the restri
ted set (36) of 
onstraintsis equivalent to minimizing lnZQ with respe
t to these parameters or, put di�erently, overa spa
e of fun
tions �(�) whi
h are of the form (41).Unlike before, the simpli
ity of (44) need not be purely formal. For instan
e, if onerestri
ts one's attention to simple approximations whi
h reprodu
es only a small subsetof the set of moments of q(�) | say the translationally invariant expe
tations hkai andthe translationally invariant nearest neighbour 
orrelations hkakbi in the 
ase of bimodalsite{disorder, so Q = ffaga2�; f(a; b)ga;b2�g, with (a; b) denoting nearest neighbours |then the 
orresponding HamiltonianH� a
quires only on-site terms and nearest neighbourintera
tions between the k. So one obtains a fairly simple translationally invariant model.For its study the full ma
hinery of equilibrium statisti
al me
hani
s and an establishedarsenal of approximation methods is, at least in prin
iple, available. We shall demonstratebelow that su
h simple approximations 
an already yield very pre
ise, if not exa
t, results.There are a number of requirements the set Q should meet to give rise to a sensibleapproximation for the underlying problem of des
ribing systems with quen
hed disorder.First, to ensure that the distribution pQ is normalized, Q must 
ontain the empty set,sin
e the normalization 
onstraint is expressed pre
isely by the 
ondition f; = hk;i = 1.Moreover, if the disorder is homogeneous in the sense that the distribution q(�) has a setof moments invariant under the group G of operations whi
h map the underlying latti
e,9



hen
e the set � of sites (bonds), onto itself, the set Q should be su
h that it respe
ts thesesymmetries, i.e., it ought to be 
losed under the operations g of the symmetry group Gof the underlying latti
e. Formally, if ! 2 Q then g! = fa 2 �; g�1a 2 !g should alsobe a member of Q. The invarian
e of the set of moments under G entails a 
orrespondinginvarian
e of the Lagrangian multipliers, �Qg! = �Q! for all g in G. In other words, the setof 
onstraints 
an be de
omposed into equivalen
e 
lasses under G.Fixing Q so as to 
on
entrate on moments of the disorder distribution whi
h areof �nite order or whi
h involve o

upation numbers referring to sites (bonds) only up tosome maximal distan
e obviously entails a notion of lo
ality for the 
orresponding disorderpotential �Q(�). In what follows, we shall therefore refer to approximations of this typeas Q{lo
al.2.5 Exa
t Lower Bounds for the Quen
hed Free EnergyBefore turning to a more detailed evaluation of these ideas, let us not fail to mention thatthe approximative s
heme des
ribed above provides exa
t lower bounds for the quen
hedfree energy.This is easily seen by realizing that the 
onstrained entropy maximization s
hemedes
ribed above 
an be substituted by a 
onstrained minimization s
heme for the freeenergy fun
tional F [p℄ =X�;� p(�; �)H(�; �) + ��1X�;� p(�; �) ln p(�; �) (45)using the set of moments hk!i = f!, ! 2 Q as 
onstraints. This yieldsF [pQ℄ = minp nF [p℄; hk!(�)ip = f! ! 2 Qo : (46)With suitable Lagrangian multipliers, the pQ so de�ned 
oin
ides with (40) as obtainedfrom the entropy maximization s
heme. If, moreover, one enfor
es the zero{mean{potential
ondition (10), then F [pQ℄ = FQ, with FQ given by (44).The depende
e of FQ on the set Q � P(�) is monotone in the sense thatFQ � FQ0 � F � if Q � Q0 � P(�) (47)so that FQ approa
hes the quen
ed free energy F � monotoni
ally from below, as the setof 
onstraints, as 
hara
terized by Q is in
reased. A di�erent way to see this is to re
allthat the lnZQ are obtained by minimizing lnZ� over a spa
e of Q-lo
al fun
tions � | afun
tion spa
e whi
h be
omes larger as the set Q is enlarged.2.6 Non{Bimodal and Continuous Disorder Distributions and the Vari-ational Content of the Equilibrium Ensemble Approa
hThe modi�
ations ne
essary to obtain expli
it representations of the disorder potentialand approximative s
hemes for non{bimodal or 
ontinuous disorder distributions q(�) 
an10



be inferred from what has been outlined in Se
s. 2.3{2.4 above. We will brie
y state themin what follows. They also point | more obviously than our previous 
onsiderations |to the variational 
ontent of the equilibrium ensemble approa
h to disordered systems.For the remainder of this se
tion, we drop the restri
tion that the ka be bimodal.To begin with, let us assume for simpli
ity that all moments of the (non{bimodal or
ontinuous) disorder distribution q(�) exist. They are given as expe
tations under q(�) ofall possible produ
ts of powers of the ka, i.e., byfn! = *Ya2! knaa (�)+q ; ! 2 �; na 2 IN ; (48)with n = (na)a2!. The partition fun
tion of the equivalent equilibrium ensemble des
ribingthe disordered system is then given byZ� =X�;� exp[��H(�j�) � ��(�)℄ ; (49)with � of the form ��(�) = X!��;n�n! (kn! (k)� fn! ) : (50)Here we have introdu
ed kn! (�) = Ya2! knaa (�) : (51)In (49), (50) we have 
hosen to satisfy the zero{mean{potential 
ondition (10) at theoutset. The 
oupling 
onstants �n! have to be determined su
h that the Gibbs distributionp� 
orresponding to (49) reprodu
es the moments of the underlying disorder distributionq, i.e., hkn! i = fn! is supposed to hold for all ! and n. This amounts to minimize lnZ�as a fun
tion of the �n! , in 
omplete analogy with the bimodal 
ase. As above, the �n! 
anbe interpreted as Lagrangian multipliers of a 
onstrained entropy maximiation s
heme or,alternatively, of a 
onstrained free energy minimization s
heme.As before, approximations are obtained by enfor
ing only a subset of the full set of
onstraints, that is, by requiring the Gibbs distribution p� to reprodu
e only a subset ofthe full set of moments (48) of the disorder distribution q(�). This 
an be done in severalways, for instan
e by requiring a mat
h with the fn! only for ! in some subset Q of thepowerset P(�) of the set of sites (or bonds) of the latti
e, by mat
hing moments onlyup to some maximal value for the na, or by 
ombining these two trun
ation s
hemes invarious ways.If one de�nes the approximations through a moment mat
hing s
heme restri
ted onlywith respe
t to the 
hoi
e of the ! in (48) and (50), demanding that ! 2 Q � P(�) asin Se
. 2.4, the minimization of lnZ� with respe
t to the 
orrespondingly restri
ted setof parameters �n! , ! 2 Q, amounts to a minimization over a true in�nite dimensionalfun
tion spa
e, i.e., as a variational problem. It amounts to minimizing lnZ�, interpretedas a fun
tional of � over a spa
e of fun
tions � whi
h are Q{lo
al in the sense de�nedabove. That is, they are of the form�(�) = X;6=!2Q � !(�)� h !(�)iq � ; (52)11



ea
h  ! being a fun
tion of the ka, a 2 !, whi
h is analyti
 in every 
omponent, sin
epower series expansions were assumed to exist; 
f. Eq. (50). Restri
ting also the rangeof na values would further restri
t the set of fun
tions to multinomials of some maximaldegree.Conversely, dropping the analyti
ity 
onstraint on the  ! will enlarge the fun
tionspa
e suÆ
iently to treat 
ases where not all moments of q(�) exist.Having said this mu
h, it should have be
ome 
lear that the equivalent equilibriumensemble approa
h 
ould have been formulated as a variational problem right away. Towit, 
onsider Z�, interpreted as a fun
tional of �,Z� = Z[�℄ =X� Z(�) exp[���(�)℄; (53)and let us assume at the outset that the � under 
onsideration satisfy the zero{mean{potential 
ondition (10); alternatively, one might impose it a{posteriori. Using the disorderdistribution q(�) this may be rewritten as an average:Z� = Z[�℄ = hZ(�) exp[���(�) � ln q(�)℄iq : (54)By Jensen's inequality, lnZ� = lnZ[�℄ � hlnZ(�)iq � hln q(�)℄iq ; (55)where we have invested h�(�)iq = 0. The task then is to minimize the left hand side of(55) over a suitable spa
e of fun
tions � satisfying h�(�)iq = 0. This variational pointof view was utilized by George et al. [10℄ in their study devoted to the 
omputation ofphase{boundaries of bond{disordered 2{D Ising models | without 
onne
ting it to theequilibrium ensemble idea and to the heuristi
s asso
iated with it, and without, so itseems, the awareness that it allows to pro
eed to exa
t solutions.Indeed, the inequality in (55) 
an be satis�ed as an equality, i.e., the lowest boundattained and thereby the exa
t quen
hed free energy 
omputed, if �(�) is 
hosen su
h thatZ(�) exp[���(�) � ln q(�)℄ = 
onst (56)in the sense that this quantity does not depend on �. The value of this 
onstant must, of
ourse, be Z�, so (56) is nothing but the Morita equation (6) in disguise. That is, it is theformal solution of the variational problemÆ lnZ[�℄Æ� = 0 : (57)Approximations are obtained by restri
ting the spa
e of fun
tions � over whi
h aminimum of lnZ[�℄ is sought, in other words, the domain of defenition of the fun
tionallnZ[�℄, to fun
tions whi
h are Q{lo
al in the sense explained before. Approximations 
ansystemati
ally be improved by in
reasing the size of the set Q
12



3 Re
ursive evaluation of 
oupling 
onstantsFor systems with quen
hed, un
orrelated bimodal site or bond disorder, one 
an write downmore or less expli
it expressions for the 
oupling 
onstants �! of the full disorder potential�. It turns out that these expressions generate 
onventional low{
on
entration expansionsfor the quen
hed free energy (1) as well as perturbation expansions about pure referen
esystems. In the present se
tion, we shall establish this 
onne
tion. In Se
. 3.2, we spe
ializeto models with bond{ or site{dilution for whi
h additional exa
t information about theexa
t disorder potential �(�) is available. Among other things, we use it to reprodu
ethe known exa
t solutions of one{dimensional models with quen
hed site or bond dilutionand to exhibit simplifying features of these solutions in the absen
e of symmetry breaking�elds.3.1 General resultsWe 
onsider systems with quen
hed, un
orrelated bimodal site or bond disorder, de�nedon a latti
e L 
ontaining N sites. As before, let � denote the set of sites (bonds) of thelatti
e. The distribution q(�) des
ribing the disorder 
on�gurations� = fka; a 2 �g � fa 2 �; ka = 1g (58)is 
hara
terized by a single parameter �,q(�) = Ya2� �ka(1� �)1�ka = �j�j(1� �)j�j�j�j ; (59)so that f! = hk!iq = �j!j: (60)We use the Morita equation (6),��(�) = � ln[q(�)=Z(�)℄ � lnZ� (61)and the representation ��(�) = � X;6=!���!(k!(�)� fw) (62)for the exa
t potential �(�), to obtain the 
oupling 
onstants �!. This is a
hieved byinserting (62) and (60) into the Morita equation, and by 
onsidering this equation �rst for� = ;, whi
h gives��(;) = X;6=!���!�j!j = �j�j ln(1� �) + lnZ(;)� lnZ� ; (63)and then for � 6= ;, whi
h yields��(�) = ��(;) � X;6=!���!= �j�j ln(1� �)� j�j ln � �1� ��+ lnZ(�)� lnZ� : (64)13



Subtra
ting (64) from (63), we getX;6=!���! = �j�j ln �1� �� �� lnZ(�) + lnZ(;) ; 8 � 6= ; : (65)To determine the �! individually, we introdu
e the quantities x!, ! � �, throughZ(�) = Y!��x! (66)or, equivalently lnZ(�) = X!�� lnx! ; (67)where � ranges through all subsets of � (in
luding the empty set) and the produ
t in (66)is over all subsets of �, in
luding again the empty set. Eq. (66) may be interpreted as are
ursive de�nition of the x!; alternatively, one may invert this relation dire
tly to yieldlnx! = X��!(�)j!j�j�j lnZ(�) : (68)Inserting this into (65), and re
alling that (65) is supposed to hold for all � 6= ;, we 
animmediately 
on
lude �! = � ln �x!�1� �� �Æj!j;1� ; ! 6= ; : (69)This is the more or less expli
it expression for the 
oupling 
onstants �! of the exa
tdisorder potential � announ
ed above. Using this result, and returning, on
e more, tothe � = ; version (63) of the Morita equation, we get an (again more or less expli
it)expression for the free energy of the equivalent equilibrium ensemble,lnZ� = �j�j[� ln�+ (1� �) ln(1� �)℄ + X!�� �j!j lnx! : (70)The �rst 
ontribution in (70) is readily identi�ed as the expe
ted 
ontribution of theentropy of mixing. Using (68), the se
ond 
ontribution 
an be 
ast into the formX!�� �j!j lnx! = X����j�j(1� �)j�j�j�j lnZ(�) : (71)Up to the fa
tor ���1 this is just the Brout avarage (1) of the free energy for the 
ase ofquen
hed, un
orrelated bimodal site or bond disorder as it should, sin
e no approximationswere involved in the above 
onsiderations.Clearly, we 
annot expe
t to be able to evaluate (70) 
ompletely, if we are unable to doso in the more standard formulation (11). Nevertheless, we have gained something useful.First, Eq. (70) together with (68) amounts to a formal model{independent pres
riptionfor reorganizing the Brout average in su
h a way that it is turned into an expansion orderedby in
reasing powers of �. That is, for systems with bimodal bond{ or site{disorder,there is apparently an intimate relation between the equilibrium ensemble approa
h to14



disordered systems and 
onventional low 
on
entration expansions for su
h systems. Itshould be noted that we were as yet not for
ed to spe
ify the physi
al meaning of (low)
on
entration in the above 
onsiderations. Clearly, this will depend on whi
h meaning wede
ide to asso
iate with the ka = 1 states of the disordered system. Think for example ofa randomly spin{diluted magnet. If we 
hoose ka = 1 to designate that site a is o

upiedby a spin, then � has the meaning of a (spin) density, and (70) gives indeed a 
onventionallow 
on
entration expansion. We might, of 
ourse, also have 
hosen ka = 1 to designate anempty site (o

upation by a va
an
y), thereby generating an expansion about the pure,homogeneous referen
e system. Clearly these di�erent 
hoi
es are giving entirely di�erentmeanings to the expressions appearing in (68), (70) and (71). The quantity x; = lnZ(;),for instan
e, gives the free energy of the empty latti
e, if ka = 1 denotes o

upan
y by aspin, whereas it gives the free energy of the fully o

upied homogeneous system, if ka = 1denotes that site a is empty.Se
ond, we 
an use the formal results obtained above to 
ompute at least the simplest
oupling 
onstants of the exa
t disorder potential expli
itly. This turns out to provideuseful information for the investigation of the approximative systems introdu
ed in theprevious subse
tion.Third, for models with bond{ or site{dilution, we will be able to show in Se
. 3.2below, that a large nontrivial 
lass of 
oupling 
onstants of the exa
t disorder potential �will vanish in the absen
e of symmetry-breaking �elds. This pie
e of information, too, 
anbe useful as a guide for �nding eÆ
ient sequen
es of approximations within the s
hemepresented in Se
. 2.4.3.2 Models with Bond{ and Site{DilutionModels with bond{ and site{dilution exhibit a simplifying feature whi
h allows to 
arrythe formal developement of the equilibrium ensemble approa
h one step further, namelythe notion of independent non{intera
ting 
lusters in terms of whi
h every disorder 
on-�guration 
an be 
hara
terized.If we adopt the 
onvention that ka = 1 denotes an o

upied site (bond), so that theequilibrium ensemble approa
h generates a 
onventional low 
on
entration expansion asexplained in the previous subse
tion, we 
an establish the following results:(i) x! = 1, hen
e �! = 0, if ! denotes a dis
onne
ted set of o

upied sites (bonds).(ii) In the absen
e of symmetry breaking �elds, x![fag = 1, hen
e �![fag = 0, if ! denotesa 
onne
ted 
luster 
ontaining at least two o

upied sites (one o

upied bond) towhi
h a single site (bond) a is added to form a dangling 
onne
tion with !.(iii) In the absen
e of symmetry breaking �elds, x!1�!2 = 1, hen
e �!1�!2 = 0, if !1 � !2denotes a 
onne
ted 
luster of sites (bonds) whi
h 
onsists of two separate sub{
lusters !1 and !2 that are 
onneted only via a single 
ommon site.Note that (ii) 
an in fa
t be read as a spe
ial 
ase of (iii). All three results hold forsite or bond diluted models with nearest neighbour intera
tions on arbitrary graphs. They15



follow dire
tly from the de�nition (66) of the x!. We establish them separately for systemswith site{dilution and with bond{dilution.3.2.1 Models with site{dilutionIdentifying the 
on�gurations � of the disordered system with the sets of o

upied sites,we have Z(;) = x; = 1 ; (72)and Z(�) = Y;6=!��x! (73)for � 6= ;. The proof of (i) is by indu
tion. First, using Z(fag) = xfag = Z1 for 
on�gu-rations in whi
h only a single site a is o

upied, and Z(fag [ fbg) = Z(fag)Z(fbg) = Z21 ,if a and b are not nearest neighbours, one immedieately obtains xfa;bg = 1 for the sim-plest dis
onne
ted set fa; bg 
ontaining only two sites. Supposing now that (i) has beenproven for all dis
onne
ted sets ! 
ontaining up to n sites, and assuming that � denotesa dis
onne
ted site 
ontainig n+ 1 sites, one hasZ(�) = Y����Z(��) ; (74)where the produ
t is over all independent 
lusters (maximally 
onne
ted subsets) of �. Bysupposition Z(�) = Y����Z(��) = Y����� Y!���� !�� x� (75)entailing x� = 1 also for the dis
onne
ted set � 
ontaining n+1 sites, whi
h proves (i) forthe 
ase of site{dilution.Next, to prove (ii) we 
onsider 
on�gurations of the form � = ![fag, where the site aforms a dangling 
onne
tion with !. Denote by E(�a; �b) the intera
tion energy betweenthe degree of freedom sitting on the dangling site a and �b, the degree of freedom in ! towhi
h it is 
onne
ted, in the absen
e of symmetry breaking �elds. This intera
tion energyis assumed to be invariant under an internal symmetry group of the model in the sensethat Ẑ =X�a exp[��E(�a; �b)℄ (76)is independent of �b so that the partition fun
tion Z(�) = Z(! [ fag) in the absen
e ofsymmetry breaking �elds is given byZ(�) = Z(! [ fag) = Ẑ Z(!) : (77)The proof of (ii) is likewise by indu
tion. First, we have Z(fag) = Z1 = xfag and, bythe fa
torizing property (77), Z(fa; bg) = Z2 = Ẑ Z1 = x2fag xfa;bg for a 
on�guration
ontaining only two neighbouring sites a and b. This gives xfa;bg = Ẑ=Z1. Adding anotherdangling 
onne
tion in � = fa; b; 
g gives Z(fa; b; 
g) = Z3 = Ẑ2 Z1 = x3fag x2fa;bg xfa;b;
g,so xfa;b;
g = 1, whi
h veri�es (ii) for the smallest 
on
eivable set of the form ! [ fag with16



! 
ontaining two sites. Suppose now that (ii) has been established for all sets of the form! [ fag with a dangling 
onne
tion from ! to a single site a and with ! 
ontaining up ton sites, and let � be of the form � = ~! [ fag with ~! 
ontaining n+ 1 sites. ThenZ(�) = Z(~! [ fag) = Ẑ Z(~!)= � Y;6=!�~! x!�� Y;6=!0�~! x!0[fag� xfag x~![fag ; (78)so Ẑ = � Y;6=!0�~! x!0[fag� xfag x~![fag : (79)By supposition all x!0[fag in the above produ
t ex
ept xfa;bg are unity, where b denotesthe unique site in ~! 
onne
ted to a via the dangling 
onne
tion. Sin
e xfa;bg xfag = Ẑ, we
an 
on
lude that x~![fag = 1 as well, whi
h 
ompletes the proof of (ii) for the site{dilutedsystem.To verify (iii), note that the result xfa;b;
g = 1 for three neighbouring sites a; b; 
obtained above establishes (iii) for the smallest 
on
eivable set of the form !1 � !2, with!1 = fa; bg and !2 = fb; 
g. The result follows by indu
tion after noting that in theabsen
e of symmetry breaking �elds Z(!1 �!2) = Z�11 Z(!1)Z(!2), and by 
onsidering the
onsequen
es of this identity in the x!{representation.3.2.2 Models with bond{dilutionIn the bond{diluted 
ase, we identify � with the set of o

upied bonds. Thus, if � = ;,the system 
onsists of a 
olle
tion of N non{intera
ting degrees of freedom, and hen
eZ(;) = ZN1 ; (80)where, as before, Z1 denotes the parition fun
tion of an isolated degree of freedom. If � 6= ;,there will be a set of intera
ting degrees of freedom | those sitting in 
lusters formedby bonds o

upied in � | but in general also a 
olle
tion of non{intera
ting degreesof freedom. Denoting by Z� the partition fun
tion of the degrees of freedom intera
tingthrough the set of bonds o

upied in �, we 
an writeZ(�) = ZN1 Z�Zn(�)1 � ZN1 ~Z(�) ; (81)where n(�) is the number of verti
es linked by bonds o

upied in �. Returning to the x!representation (66), we identify x; = ZN1 (82)and ~Z(�) = Z�Zn(�)1 = Y;6=!��x! : (83)The ~Z(�) have properties analogous to the Z(�) in the site{diluted problem. In parti
ular,if � = �1[�2 and �1 and �2 are mutually dis
onne
ted sets of o

upied bonds, then ~Z(�) =17



~Z(�1) ~Z(�2). This fa
torizing property again entails x! = 1, if ! denotes a dis
onne
tedset of bonds. The proof is by indu
tion in 
omplete analogy to the site diluted 
ase, andit will not be repeated here.Next, to establish (ii) for the bond diluted 
ase, we note that~Z(! [ fag) = Z![fagZn(!)+11 = ẐZ1 Z!Zn(!)1 = ẐZ1 ~Z(!) (84)in the absen
e of symmetry breaking �elds, if a denotes a dangling 
onne
tion added tothe set !; here Ẑ has the same meaning as in the site diluted 
ase. Again, by indu
tivereasoning in 
omplete analogy with the site diluted problem, one veri�es (ii), i.e., x![fag =1 if ! 
ontains at least one o

upied bond.Finally, to prove (iii), we note that~Z(!1 � !2) = Z!1�!2Zn(!1)+n(!2)�11 = Z!1Zn(!1)1 Z!2Zn(!2)1 = ~Z(!1) ~Z(!2) ; (85)where the se
ond equality requires the absen
e of symmetry breaking �elds. This fa
tor-izing property of the ~Z(!1 � !2) entails (iii) on the level of the x!{representation.3.2.3 One dimensional models with bond{ or site{dilutionOne dimensional systems with bond or site dilution are parti
ularly simple be
ause in1{d one has a 
omplete overview over the family of 
onne
ted 
lusters whi
h 
onsists justof isolated (�nite) 
hains. This allows to give an expli
it representaion of the x! de�nedthrough (66) in terms of 
hain free energies, whi
h we brie
y re
ord here.For the site diluted problem, denoting by Zn the partition fun
tion of an isolated open
hain of n o

upied sites, and by xn the 
orresponding x variable, we haveZn = nYk=1xn+1�kk ; (86)whi
h gives x1 = Z1, and (with Z0 = 1)xn = ZnZn�2=Z2n�1 ; n � 2 : (87)Inserting this into the expression (70) for the free energy of the equivalent equilibriumensemble and normalizing with respe
t to sample size N = j�j, we get��f� = limN!1N�1 lnZ�= �� ln�� (1� �) ln(1� �) + (1� �)2 1Xn=1 �n lnZn : (88)Up to the 
ontribution 
oming from the entropy of mixing, this reprodu
es the exa
tsolution as obtained, e.g., by Wortis [25℄. In the absen
e of symmetry breaking �elds wehave lnxn = 0 for n � 3, so in this 
ase��f� = �� ln�� (1� �) ln(1� �) + � lnZ1 + �2 ln(Z2=Z21 ) : (89)18



In the bond diluted problem, isolateds 
hain 
ontaining n su

essive bonds 
onstitute
hains of n + 1 intera
ting degrees of freedom. If we formulate (83) for su
h 
hains, itreads Zn+1Zn+11 = nYk=1xn+1�kk ; (90)where the xk now refer to 
hains 
ontaining k bonds. This gives x1 = Z2=Z21 , andxn = Zn+1Zn�1=Z2n ; n � 1: (91)Comparing with the 
orresponding expression (87) for the site{diluted 
ase, we note thatxbondn = xsiten+1 for n � 1. For the free energy per site in the bond{diluted system we thusget (re
alling x; = ZN1 )��f� = �� ln�� (1� �) ln(1� �) + (1� �)2 1Xn=1 �n�1 lnZn ; (92)thereby reprodu
ing again the exa
t solution[25℄. In the absen
e of symmmetry breaking�elds, lnxn = 0 for � � 2, and the expression simpli�es to��f� = �� ln�� (1� �) ln(1� �) + lnZ1 + � ln(Z2=Z21 ) : (93)Eqs. (88) and (92) 
an be evaluated for all models for whi
h the �nite 
hain thermody-nami
s is known, e.g., from transfer{matrix te
hniques.Note that the result (ii) 
on
erning the vanishing of 
oupling 
onstants of the disorderpotential of the form �![fag in the absen
e of symmetry breaking �elds implies that inthis limit very simple approximations in the moment{mat
hing approximation s
hemedes
ribed in Se
. 2.2 already provide exa
t solutions for bond{ or site{diluted 
hains. Forthe bond{diluted 
ase, it is the simplest 
on
eivable annealed approximation enfor
ingonly the average o

upan
y hkai = � of the bonds. In the 
ase of site{dilution, one has to�x the average site{o

upan
y at � and the expe
tations hkakbi for neighbouring sites at�2 in order to reprodu
e the thermodynami
s of the quen
hed system exa
tly.On the 
ontrary, if there is a nonvanishing symmetry breaking �eld, then Eqs. (87)and (91) imply that no �nite approximation in the moment{mat
hing s
heme des
ribedin Se
. 2.2 is exa
t. Nevertheless, the simplest approximations enfor
ing only hkai = � inthe bond{diluted 
ase, and both, the site o

upan
y hkai = � and the nearest neighbourexpe
tation hkaka+1i = �2 in the site{diluted 
ase already give rather pre
ise results, aswill be demonstrated for the Ising model in II.4 Thermally Correlated Frozen-In DisorderHaving treated un
orrelatded bimodal bond{ and site{disorder in some detail, it is perhapsappropriate to re
all that the equlibrium ensemble approa
h to disordered systems is notrestri
ted to this 
ase. Ex
ept in the previous se
tion we have, in fa
t, never made useof the spe
i�
 simpli�
ations pertaining to un
orrelated disorder. The moment mat
hings
hemes explaind in Se
s. 2.4{2.6. 
an naturally also be put to work in the 
ase of 
orrelated19



disorder. The only nontrivial pie
e of information needed is 
ontained in the system ofmoments (20) or (48) for the bimodal and non-bimodal 
ases, respe
tively. In real physi
alsystems, whi
h do as a rule exhibit some degree of 
orrelations between the 
on�gurationaldegrees of freedom, a subset of the full set of moments, obtained e.g. through s
atteringexperiments, is often the only pie
e of information that is a
tually available about thedisordered system in question. So, in situations where relatively simple approximations ina moment mat
hing s
heme 
an be expe
ted to produ
e reliable results, the equilibriumensemble approa
h appears to be an ideally suited tool to use.In the present se
tion we will treat 
orrelated bimodal bond{ and site{disorder in somedetail. We will restri
t our attention to the 
ase where the 
orrelations are produ
ed asa result of some previous annealing pro

ess (in the narrow metallurgi
al sense). Thatis, we suppose that the quen
hed disorder distribution is an equilibrium distribution pro-du
ed at values of the external parameters (temperature, �elds, 
hemi
al potential, et
.)
hara
teristi
 of the preparation pro
ess, but in general di�erent from the values at whi
hexperiments on the system are a
tually being perfomed.Let us assume that the system is prepared at (inverse) temperature �� and that it isdes
ribed by the total Hamiltonian�Htot(�; �) = �H(�j�) + V (�) (94)where �H(�j�) is the Hamiltonian of the disordered system des
ribing the energy of the�{degrees of freedom at �xed disorder 
on�guration �, albeit at parameter settings 
har-a
teristi
 of the preparation pro
ess, whi
h we indi
ate by the overbar. The potential V (�)a

ounts for the fa
t that there may be an additional intera
tion energy between the 
on-�gurational degrees of freedom whi
h produ
es 
orrelations between the ka over and abovethat mediated by �. Think, for example, of a dilute magneti
 alloy. The distribution ofparti
les will usully be governed, both, by 
hemi
al intera
tions | a

ounted for by V (�)| and by �{dependent intera
tions between magneti
 degrees of freedom des
ribed by�H(�j�). In typi
al 
ases, the former may, in fa
t, be expe
ted to dominate.We assume that during the preparation pro
ess the temperature is high enough toallow the system to 
ome to 
omplete equilibrium. The distribution of the 
on�gurationaldegrees of freedom is then given by�q(�) = �Z(�)�Z exp[���V (�)℄ ; (95)where �Z(�) = P� exp[��� �H(�j�)℄. If the system is then 
ooled down to lower tempera-tures, the impurity distribution (95) may be regarded as �xed, and the disordered system
hara
terized by this quen
hed distribution will exhibit frozen 
orrelations between im-purities. In what follows, we will show that the formal developments presented in Se
. 3for the un
orrelated 
ase 
an be 
arried almost as far in the 
ase of thermally 
orrelatedquen
hed disorder.To this end we return to the Morita equation (6) and the representation��(�) = � X;6=!���!(k!(�)� �fw) (96)20



of the disorder potential �(�), the overbar indi
ating that the moments are evaluated with(95).The 
oupling 
onstants of the disorder potential for this problem of 
orrelated disorder
an now be determined along the same lines as in Se
. 3.1. For the bimodal disorder type
onsidered here, we 
an always writeV (�) = X!�� v!k!(�) (97)Using the x representation (66) for both Z(�) and for the partition fun
tion �Z(�) withthe parameters settings prevalent during the preparation pro
ess, we get�! = ���v! � ln(x!=�x!) ; ! 6= ; : (98)Returning to the � = ;{version of the Morita equation, and re
alling that �f; = 1 irrespe
-tively of the 
orrelations, and that Z(;) = x; and similarly �Z(;) = �x;, the free energy F �is obtained in the form��F � = lnZ� = ln �Z + X!�� ( ��v! + ln(x!=�x!)) �f!= �hln �q(�)i�q + X!�� lnx! �fw : (99)The reader is invited to 
ompare this with (70). The main additional obsta
le on theway to evaluating the moment expansion (99) to high orders | assuming su
h an eval-uation were possible for the 
on
entration expansion(70) in the un
orrelated 
ase | liesin the �f!, whi
h 
annot be expe
ted to be of su
h a simple form as in the 
ase of un-
orrelated disorder. Nevertheless, analyti
 approximations are 
on
eivable in the form ofhigh{temperature expansions of the �f!, if �� is suÆ
iently small. In any 
ase, as will beshown in II, relatively simple moment mat
hing s
hemes, that is, simple approximationsin the restri
ted annealing approa
h, whi
h do not require knowledge of high moments,may still be feasible and useful.It should be noted that the disorder potential �(�) redu
es to V (�), if parametervalues are the same as those during system preparation, so that x! = �x!. The readermay 
onvin
e herself that this just what is needed produ
e the 
orre
t limiting form ofZ� in the 
ase where �q(�) is the equilibrium distribution of the 
on�gurational degrees offreedom �.Spe
ializing to systems with bond{ or site{dilution, we observe that the results 
on-
erning the vanishing of 
ertain 
oupling 
onstants of the disorder potential � stated andproved in Se
. 3.2 have simple analogues in the 
ase of thermally 
orrelated disorder. Tosee this, note that the results (i){(iii), if formulated on the level of the x!, do not dependon disorder statisti
s or parameter settings; so they hold for the �x! alike. For thermally
orrelated quen
hed disorder, statements to the end that x! = �x! = 1 then translate into�! = ���v!. This implies a vanishing of the 
oupling 
onstants as in the un
orrelated 
ase,if the the potential V (�) involves no intera
tions beyond those 
oupling 
on�gurationaldegrees of freedom on neighbouring sites (bonds).21



Taking site{diluted 
hains in the absen
e of symmetry breaking �elds as an example, weobtain the following surprisingly simple expression for the free energy per site as 
omputedin the equilibrium ensemble approa
h,��f� = k�1B �s0 + �f1 lnZ1 + �f2 ln(Z2=Z21 ) ; (100)where �s0 is the entropy of mixing per site, while �f1 = hkai�q = � and �f2 = hkaka+1i�q. Thatis all e�e
ts of quen
hed 
orrelations on the free energy of the system make themselvesfelt only through the modi�ed nearest neighbour 
orrelation. This 
eases to be the 
aseif a symmetry breaking �eld is applied. Note that symmetry breaking �elds during thepreparation pro
ess manifest themselves in this 
ontext | beyond their e�e
t in modifying�f1 and �f2 | only in modifying the entropy of mixing.Similarly, in the bond{diluted system with thermally 
orrelated quen
hed bond o

u-pan
y one obtains ��f� = k�1B �s0 + lnZ1 + �f1 ln(Z2=Z21 ) : (101)So the result depends only on the average o

upan
y �f1 = � of the bonds and is independentof 
orrelations between them.The simpli
ity of the zero{�eld solutions (100) and (101) for the 1{D systems withquen
hed thermal 
orrelations is not easily dete
ted in the exa
t solution [26℄, whi
h hasbeen obtained by the dire
t averaging approa
h.5 Con
luding RemarksWe have presented an outline of the formal and systemati
 aspe
ts of Morita's equilibriumensemble approa
h to systems with quen
hed disorder [6℄. Hitherto unnoti
ed relations toother, more 
onventional sets of ideas, su
h as low 
on
entration expansions, perturba-tion expansions about pure referen
e systems, variational bounding of free energies, andgeneralizations of the idea of grand ensembles have been pointed out and elaborated.The 
anoni
al approximation s
heme within Morita's approa
h | a moment mat
hingpro
edure that goes under the name of restri
ted or 
onstrained annealing | is of anon{perturbative nature, whi
h should also be 
lear in view of its relation to variationalmethods. Conversely, the expansion of the exa
t disorder potential was demonstratedto generate 
onventional perturpation expansions. A third, in some sense intermediateapproa
h would be to attempt solving or analysing models with a trun
ated expansion ofthe full disorder potential exa
tly.For models with bond{ or site{dilution, it was demonstrated that a large non{trivial
lass of 
oupling 
onstants of the exa
t disorder potential �(�) vanishes in the absen
e ofsymmetry{breaking �elds. This fa
t may help to explain why relatively simple approxi-mations within the moment mat
hing s
hemes or the variational formulation presented inSe
. 2 have been so su

essful in des
ribing aspe
ts of 
riti
al behaviour of e.g. disorderedIsing models | undisputably so at least regarding the 
omputation of phase transitionlines ([8℄, [9℄, [10℄, [17℄), still under debate though (see, e.g., [27℄), regarding the mu
hmore 
ontroversial and diÆ
ult question of 
riti
al exponents [17℄, [22℄.22



In the 
ase of 
ontinuous disorder distributions, straightforward moment mat
hings
hemes as explained in Se
. 2 might not always prove to be the most eÆ
ient way offormulating approximative solutions. Instead of �xing moments up to a 
ertain orderdire
tly, one might, for instan
e think of reprodu
ing expe
tations only of 
ertain 
om-binations of moments of the quen
hed disorder distribution in the equilibrium ensemble.The 
hoi
e of parti
ular 
ombinations might be guided by attempts to exploit powerful an-alyti
 stru
tures, su
h as provided by orthogonal fun
tion systems, or by physi
al insight.In bond{disordered Ising models, for instan
e, the representation of the exa
t solution interms of weighted sums over 
on�gurations of van der Waerden polygons suggests that thede
isive quantities to be reprodu
ed in an equilibrium ensemble approa
h would be gauge{invariant loop-
orrelations of the natural high{temperature variables tij = tanh(�Jij),expressed here in terms of the 
onventional notation for the ex
hange 
ouplings. Thatis, the disorder potential �(�) � �(ftijg) would be designed to �x 
orrelations of the tijaround 
losed loops C, i.e., 
orrelations of the form DQ(i;j)�C tijE at their 
orrespondingquen
hed values, ea
h su
h 
orrelation involving moments of the 
orresponding quen
hedfJijg{distribution of arbitrarily high order. This idea has been exploited by George et al.[10℄ to lo
ate phase boundaries in disordered Ising models, and it is also being di
ussed ina re
ent preprint of Paladin et al. [28℄.Finally, it is perhaps worth pointing out on
e more that the equlibrium ensemble ap-proa
h appears to be well suited to study problems with 
orrelated disorder, as is borneout by the general theory of Se
. 2, and by the more spe
i�
 
onsiderations of Se
. 4.Within the framework of (low order) moment mat
hing s
hemes at least, 
orrelated dis-order appears to be hardly more 
ompli
ated than un
orrelated disorder. Regarding more
onventional approa
hes, this 
an | at best | be 
laimed for 
orrelated disorder of theGaussian type.A
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