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Abstract. Boolean networks are popular models for gene regulation, where
genes are regarded as binary units, that can be either expressed or not, each
updated at regular time intervals according to a random Boolean function of
its neighbouring genes. Stable gene expression profiles, corresponding to cell
types, are regarded as attractors of the network dynamics. However, the random
character of gene updates gives no insight into the biological mechanism behind
the existence of attractors. We propose a bipartite Boolean network approach
which integrates genes and regulatory proteins (i.e. transcription factors) into a
single network, where interactions incorporate two fundamental aspects of cellular
biology, i.e. gene expression and gene regulation, and the resulting dynamics is
highly non-linear. Since any finite stochastic system is ergodic, the emergence of
an attractor structure, stable under noisy conditions, requires a giant component
in the bipartite graph. By adapting graph percolation techniques to directed
bipartite graphs, we are able to calculate exactly the region, in the network
parameters space, where a cell can sustain steady-state gene expression profiles,
in the absence of inhibitors, and we quantify numerically the effect of inhibitors.
Results show that for cells to sustain a steady-state gene expression profile,
transcription factors should typically be small protein complexes that regulate
many genes. This condition is crucial for cell reprogramming and remarkably well
in line with biological facts.

E-mail: alessia.annibale@kcl.ac.uk

1. Introduction

Originally introduced by Kauffman to model gene regulatory networks in living cells
[1], Boolean networks have since become one of the most popular class of models to
analyze complex systems of interacting units, finding use in a wide variety of fields
including spin-glasses [2], neural networks [3], computing circuits [4], time-series [5],
biological [6, 7], economic [8] and geological sciences [9]. Their dynamic properties,
in particular their phase transition behaviour and number and size of attractors, have
been studied extensively [10, 12, 11, 13, 14, 15] and have been shown to display features
of biological systems, such as evolvability [16], homeostasis [17] and criticality [18],
and to capture much of the phenomenology of single gene knock-out experiments [19].
However, the random character of the update functions of its constituent units, does
not carry any information on the biological mechanism with which genes interact with
each other, making it difficult to establish an explicit link between gene interactions
and the existence of cellular attractors, let alone transitions between them, as observed
in cellular differentiation or in cell reprogramming experiments [20], although general
mechanisms for cell differentiation have been proposed [34, 31]. In conventional
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Boolean networks, each gene is updated according to a randomly chosen Boolean
function of the states of neighbouring genes, which are themselves picked at random.
Cell types are then rationalised as attractors of a dynamical system of many interacting
degrees of freedom, however, no hint is given on how and why genes interact.

Recently, neural network models of gene regulation, encoding cellular attractor
structures in the interactions between regulatory genes (or proteins), have been
successful in modelling dynamics similar to those observed in experiments [21, 22, 23].
However, the dense nature of the (Hopfield-like) interactions, assumed in these models,
is at odds with biological facts. Indeed, each gene is known to be regulated by a
small number of transcription factors (TFs), that are single (or small complexes of)
proteins, and each protein is synthetised from one gene. This leads to effective gene-
gene interactions, mediated by TFs, which are sparse and directed.

Although gene-regulatory networks (GRNs) and protein interaction networks have
traditionally been studied separately, they are deeply connected: gene interactions
exist only through and via TFs. This induces a special structure in GRNs, in
particular a precise relation must exist between the degree statistics of GRNs and
the statistics of TF sizes (i.e. number of proteins that consitute a TF). In this
work, we propose a bipartite Boolean model which integrates regulatory genes and
TFs into a single bipartite network, with sparse and directed links, encoding two
fundamental aspects of cell biology, i.e. gene expression (of proteins forming TFs) and
regulation of genes (by TFs). Recently, bipartite networks with sparse interactions
have been shown to have learning and parallel retrieval capabilities, via their link with
restricted Boltzmann machines [24, 25] and neural networks with diluted patterns
[26, 35]. However, this connection only holds for bipartite networks with symmetric
interactions. Processing capabilities of sparse directed bipartite networks are still
unexplored territory. Our analysis will show that for a non-trivial gene expression
profile to be stable in noisy conditions, characteristic of biological systems, TFs need
to be typically single proteins or small protein complexes, able to regulate many genes.
This condition is a prerequisite for the existence of cellular life, and it is remarkably
well in line with biological findings.

The rest of this paper is organised as follows: in Sec.2 we will give an account of
the intricate dynamics of gene expression, protein synthesis, TF formation and gene
regulation; in Sec.3 we will introduce a bipartite graph formalism that simplifies the
description; in Sec.4 we will solve the model and in Sec.5 we will discuss results and
pathways for future work. Technical details are relegated to appendices.

2. Gene expression, protein synthesis, complex formation and gene
regulation

Gene expression is regulated by transcription factors (TFs) that are proteins or
complexes of proteins, which are themselves synthetised from expressed genes. One
can visualise the network of regulatory genes and TFs as a multilayered network (see
Figure 1) with layers representing the different components involved in gene regulation:
genes, proteins and protein complexes. Some interactions, like gene expression (from
genes to proteins) and gene regulation (from proteins or protein complexes to genes),
are directed, whilst others, e.g. proteins forming a complex, are non-directed. We
describe the gene expression level of each gene i by a binary variable σi taking the
value 1 if the gene is expressed, and 0 if it is not. Gene expression levels are updated
at regular time intervals, measured e.g. in terms of stages of the cell cycle. We can
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Figure 1. A network representation of gene regulation (not all nodes/edges are
shown). A gene σi synthesises a protein pi, which can reversibly bind (undirected
edges) to form protein complexes cij . The proteins and complexes may act as
transcription factors (TFs) of the genes. The regulatory effect that a TF has

on a gene is given by ξ
a(b)
j ∈ {0,±1}: the superscript of ξ denotes the gene(s)

contributing to the TF synthesis, whilst the subscript denotes the gene regulated
by the TF.

express its dynamics in terms of the concentration of proteins pj , binary complexes
cjk and higher order complexes that regulate its expression, through the multilayered
network parameters, as:

σi(t+ 1) = Θ

∑
j

ξji pj +
∑
j,k

cjkξ
jk
i + . . .− Tzi − θi

 (1)

Here Θ is the Heaviside step function, zi is a zero-averaged random variable mimicking
biological noise, T is a parameter that scales the strength of the noise, ξai ∈ {0,±1}
denotes the regulatory effect of TF a (protein or complex) on gene i, and θi is a
gene specific threshold, representing a barrier that regulatory interactions need to
overcome to activate the gene. The ellipsis represent regulatory effects from higher
order complexes that we do not write explicitly. Reaction equations, in continuous
time, can be written for the evolution of the concentration of proteins,

ṗi = σiηi − pi
∑
j

pjΠ
+
ij +

∑
j

cijΠ
−
ij − γipi , (2)

and protein complexes,

˙cij = pipjΠ
+
ij − cijΠ

−
ij − γijcij . (3)

Here ηi is the rate of protein i synthesis, Π±ij are association/dissociation rates for the
complex of protein i and j and the γ variables are degradation rates. The protein-
protein interaction network of a cell can be constructed from the non-zero values of Π+

ij

that details which proteins interact with one another. Assuming that the dynamics of
protein synthesis, dissociation and decay is much faster than that of gene expression,
one can apply a separation of time scales resulting in stationarity in p and c for each
time step in the gene expression dynamics. At stationarity (3) gives,

cij =
Π+
ij

Π−ij + γij
pipj , (4)

which allows us to write the stationary solution of (2) as

pi =
σiηi∑

j

γijΠ
+
ij

Π−
ij

+γij
pj + γi

. (5)
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When σi = 0, the protein from gene i is not synthesised and (5) rightly gives pi = 0.
When σi = 1 expanding the right hand side of (5) in the limit of small protein
concentration (i.e. pj = 0) gives,

pi '
ηi
γi

1− 1

γi

∑
j

γijΠ
+
ij

Π−ij + γij
pj

 , (6)

which can be rearranged into the following form,

γi '
∑
j

[
γ2
i

ηi
δij +

γijΠ
+
ij

Π−ij + γij

]
pj , (7)

or, in vector notation,

γ = Mp, (8)

where M is a matrix with symmetric and diagonal parts, M = S + D. By inverting
this matrix equation, stationary values of protein concentrations are found as

pi = σi
∑
j

M−1
ij γj . (9)

The expansion for small protein concentrations carried out above relies on the fact
that concentrations of transcription factors are usually quite low (typically in the nM
range) and comparable to their dissociation factors [27].

Substituting into (1), one obtains the following equations for gene expression
levels which are effectively interacting through Jij , Jijk and higher order interactions

σi(t+1)=Θ


∑
j

ξji
∑
k

M−1
jk γk︸ ︷︷ ︸

Jij

σj+
∑
j,k

ξjki
∑
`,`′

Π+
jkγ`γ`′M

−1
j` M

−1
k`′

Π−jk + γjk︸ ︷︷ ︸
Jijk

σjσk + . . .−Tzi−θi


These interactions are sparse, as the regulatory interactions ξ are sparse. From
the form of Jij and Jijk, it can be seen that the interaction between two genes
require regulation via single proteins and the interaction between three genes requires
regulation through a complex of two proteins. Expanding this reasoning, one sees that
effective interactions between n genes requires complexes that are formed from n− 1
proteins.

In the next section we will introduce a more economical description, that will
allow one to go beyond binary complexes by explicitly taking into account higher
order complexes. This will be achieved by regarding proteins and protein complexes,
of any order, that regulate gene expressions, simply as TFs, which are formed from
the expression of genes. Hence, the intricate dynamics of gene expression, protein
synthesis, complex formation and gene regulation will be reduced to a bipartite graph
model, with two sets of nodes, representing, respectively, genes and TFs.

3. Definition of a simplified model

3.1. Bipartite graph formulation

We model the combined network of genes and TFs as a bipartite graph, where one
set of nodes is constituted by N regulatory genes and the other by P = αN TFs,
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Figure 2. Bipartite graph representation of a system with N regulatory genes
and αN TFs and two sets of directed links, i.e. η (from genes to TFs) and
ξ (from TFs to genes). The average in-degrees of TFs and genes are c1 and
d2 respectively. The average out-degrees follow from conservation of links, as
d1 = αc1 and c2 = d2/α.

with α=O(1)‡. Each gene is modelled as a Boolean variable σi, where i = 1, . . . , N ,
taking value 1 if gene i is expressed and 0 otherwise, and each TF is modelled by a
real variable τµ, µ=1, . . . , αN , which denotes the concentration of TF µ.

A directed link ηµi = 1 exists, from gene i to TF µ, if gene i expresses a protein
that contributes to TF µ and a directed link ξµi =±1 exists, from TF µ to gene i, if
TF µ activates (+1) or inhibits (−1) the expression of gene i (see Fig.2). One has
ηµi = 0, if no link exists from gene i to TF µ, and ξµi = 0, if no link exists from
TF µ to gene i. This formulation is similar to the one introduced in gene protein
Boolean networks (GPBN) [32, 33], however, there is a key difference: a gene does
not necessarily produce just a single TF, but may contribute to several different ones
through the formation of complexes that contain the protein encoded by the gene in
question.

For a given directed bipartite network (ξ,η), we denote the in-degree of TF µ by

cinµ (η) = |∂ηµ|, where ∂ηµ = {i : ηµi = 1}, and the in-degree of gene i by din
i (ξ) = |∂ξi |,

with ∂ξi = {µ : |ξµi | = 1}. For simplicity, we consider random graph ensembles
with the nonzero ξ’s and η’s independently and identically distributed according to
P (η = 1) = c1/N and P (|ξ|= 1) = d2/αN , with c1 =O(1) and d2 =O(1). Then, the
resulting distributions of the in-degrees P in

d (d) and P in
c (c) are Poissonian with average

d2 and c1 respectively. Conservation of links demands d1 =αc1 and d2 =αc2, where d1

and c2 are the average out-degree of genes and TFs respectively. The out-degree
distributions P out

d (d), P out
c (c) are Poissonian with average d1 and c2, respectively.

More general graph ensembles are considered in Appendix A.
Physically, c1 represents the average size of TFs (i.e. average number of proteins

forming a TF), while c2 represents the average number of genes regulated by a TF (or
TF promiscuity). It is possible to reduce the bipartite network down to a gene-gene
interaction network (normally the focus of experimental work), by simply integrating
out the TFs. Since TFs are the intermediaries of gene-gene interactions, there exist
a precise relation between the (in- and out-) degree distribution of the gene-gene
interaction network and the distribution of TF sizes and promiscuities. This relation
is derived in Appendix A for general graph ensembles.

‡ There are about N = 2500 regulatory genes in the human genome and the number of TFs is
estimated to be of the same order [28, 29, 30].
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3.2. Regulatory dynamics

We assume that gene expression levels are updated synchronously via

σi(t+ 1) = Θ

[∑
µ

bµi ξ
µ
i τµ(t)− θi − Tzi

]
, (10)

where bµi is the binding affinity of TF µ to its target gene i. For a TF µ to be
synthesised, all the genes coding for proteins that form TF µ, must be expressed at
the same time. Upon introducing the order parameter

mµ(t) =
∑
j

ηµj σj(t)

cµ
(11)

which takes value 1 when this condition is satisfied, the evolution of TF concentrations
can be modelled by the set of differential equations

τ̇µ = Π+
µ δmµ(t),1 −Π−µ τµ (12)

where the production/degradation rates Π±µ will be set to 1 for all µ henceforth, and
δx,y is the Kronecker delta. A separation of timescales, arising from the fast evolution
of TFs when compared to gene expression, allows to approximate TF concentrations
with their stationary values,

τµ(t) = δmµ(t),1 (13)

Within this approximation, each τµ is modelled as a Boolean variable, which takes
value 1 if TF µ is synthetised and 0 otherwise. From now on we will set all the
binding affinities bµi = 1 ∀ i, T = 0 and θi = 0 ∀ i, so to reduce the number of
parameters explored. Substituting these values and (13) into (10), leads to the highly
non-linear gene expression dynamics

σi(t+ 1) = Θ

[∑
µ

ξµi δmµ(t),1

]
. (14)

Rewriting δmµ(t),1 =
∏
j∈∂ηµ σj(t), reveals that TFs that are products of n−1 expressed

genes create effective n-body interactions in the gene expression dynamics. In fact,

one can write (14) in terms of many-body interactions J
(`)
ij1...j`

=
∑
µ ξ

µ
i η

µ
j1
. . . ηµj`/c

`
µ

σi(t+ 1) = Θ

∑
`≥1

1

`!

∑
j1,...,j`

J
(`)
ij1...j`

σj1(t) . . . σj`(t)

 . (15)

Interestingly, truncation of the sum to ` = 1, gives a dynamics with two-body

interactions J
(1)
ij =

∑
µ ξ

µ
i η

µ
j /cµ of the Hebbian type. Were η=ξ, this would describe a

neural network capable of retrieving all of its (diluted) patterns {ξµ}αNµ=1 in parallel, for
αc21 < 1 [35, 36]. However, here the (diluted) Hebbian interactions are asymmetric and
yield an interesting dynamics in its own right, that we shall refer to as “linear”. The
linear dynamics corresponds to replacing τµ(t) = δm(t),1 in (10) with τµ(t) = mµ(t).
This will lead to a bound on the full dynamics (14), that we shall refer to as “non-
linear”. Note that in the linear case τµ is a positive real variable that measures the
fraction of expressed genes among those needed to syntethise TF µ, as opposed to the
non-linear dynamics where τµ is Boolean. It will be convenient to define a variable
τ̄µ(t) = Θ[τµ(t)]§ that indicates, for both types of dynamics, when a TF is synthetised.

§ The convention Θ(0) = 0 is used.
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In the early stages of the development of an embryo, the maternally inherited TFs
must kick-start the zygotic gene expression dynamics [37]. A key question is under
which conditions will the introduction of a small number of TFs into an inactive GRN,
result in a non-trivial steady-state gene expression profile, allowing a cell to express
all the necessary proteins to carry out its function and sustain its life.

Figure 3. Average gene and TF activities, a(t) and aTF(t) in simulations of
bipartite regulatory networks with N = 2, 500, α = 1, c1 = 1, evolving via non-
linear (left column) and linear dynamics (right column), from initial states where
all genes are inactive and 10 TFs are present. In the top panel all of the TFs are
activators (FM interactions), while in the bottom panel TFs are activators and
inhibitors with equal probability (SG interactions). Each curve shows the average
over 100 networks with the same connectivity c2, ranging from c2 = 1, 2, . . . 7
(FM) and c2 = 1, 2, . . . , 20 (SG), respectively.

4. Model analysis and results

Simulations of the linear and non-linear dynamics from initial states where all genes
are inactive and a few randomly selected TFs are present, show that the density of
expressed genes a(t)=N−1

∑
i σi(t) and of synthetised TFs aTF(t) = (αN)−1

∑
µτ̄µ(t),
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reach a steady state that depends on the interplay between activators (ξ = 1) and
inhibitors (ξ=−1) and on the network degrees (Fig.3). When all TFs are activators
(i.e. interactions are ferromagnetic (FM)) and the connectivity c2 is large, the system
approaches a steady state where approximately all the genes are expressed. However,
if inhibitory TFs exist (i.e. interactions are spin-glass (SG)), the dynamics plateaus
to a lower value of the activity, with fluctuations occurring due to competing TFs.
Furthermore, for both FM and SG interactions, the system remains in a silent state,
a(t) = O(N−1), for values of the connectivity below a certain threshold.

4.1. Percolation thresholds

A crucial property of any cell is its ability to maintain a non-trivial gene expression
profile. To be able to do so under noisy conditions, this must be supported by a large
connected network of genes and TFs: noisy dynamics on any finite network is ergodic
and thus unable to sustain non-trivial expression profiles [38, 12]. This implies that
the relevant regulatory network must reside on the giant cluster (GC) of the bipartite
network. In addition, reprogramming experiments have recently shown that almost
any cell can be reprogrammed from a small set of TFs (Yamanaka factors). To induce
macroscopic changes in cellular gene expression profiles, these must necessarily hit
the GC. Hence, the question of percolation (i.e. emergence of a GC) becomes of
paramount importance. Percolation is known to describe the phase transition of a
ferromagnet on a finitely connected network in the absence of noise and has also been
studied for directed networks [39, 40] and undirected bipartite graphs [39, 41]. Here,
we calculate exactly the percolation threshold for a directed bipartite network, where
all TFs are activators, i.e. ξµi ∈ {0, 1}, and genes are updated via the non-linear
Boolean function (14), using an adaptation of the cavity method [42]. To this end,
we introduce indicator variables ni, nµ, that take value 1 if gene i or TF µ belong
to the GC, respectively, and are zero otherwise. The indicator variable for any gene
or TF can be expressed in terms of the corresponding indicator variables for their
neighbouring nodes in the cavity graph,

ni = 1−
∏
µ∈∂ξ

i

(
1− n(i)

µ

)
, (16)

nµ =
∏
j∈∂ηµ

n
(µ)
j . (17)

Here ∂ξi represents the nodes that are the nearest neighbours of gene i via a ξ-edge,

and n
(i)
µ is the indicator variable for TF µ in the cavity graph, where gene i and all the

edges connecting to it are removed. Similarly, ∂ηµ denotes the nearest neighbours of

TF µ connected to one of its η-edges, and n
(µ)
j is the indicator variable for gene j on

the cavity graph with TF µ removed. Note that in (17) and (19) below, it is required
that empty products are evaluated to zero instead of one. Equation (17) reflects the
non-linear character of the dynamics: transcription factor µ belongs to the GC if and
only if all the genes contributing to its synthesis are on the GC. In contrast, from (16),
a gene i belongs to the GC if at least one of its regulating TFs belongs to the GC.
Similarly, the cavity equations for the nearest-neighbours of i and µ read

n
(µ)
i = 1−

∏
ν∈∂ξ

i\µ

(
1− n(i)

ν

)
, (18)
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n(i)
µ =

∏
k∈∂η

µ\i

n
(µ)
k (19)

where ∂ξi\µ denotes the set of nodes connected to i via ξ-edges, excluding the node µ

(similarly for ∂ηµ\i). Equations (18), (19) are exact on trees and, in the thermodynamic

limit, they will also become exact on graphs sampled from our ensemble, which are
locally tree-like due to the sparsity of ξµi and ηµi . In this limit, we can average (16)
and (17) over the graph ensemble. By using the generating functions G(d,c)(x) =∑∞
k=1 P

in
d,c(k)xk, and assuming that η and ξ are independent, we obtain for the

probability g=〈ni〉 and t=〈nµ〉 of being in the GC

1− g = G(d)
(
1− t̃

)
, t = G(c)(g̃) (20)

where the cavity probabilities g̃ = 〈n(µ)
i 〉, t̃ = 〈n(i)

µ 〉 solve the self-consistency equations
(B.3, B.4) and can be shown to be identical, up to differences O(N−1), to g, t,
respectively, due to the sparsity, directedness and independence of the links (see
Appendix B).

A stability analysis shows that a non-zero solution, corresponding to the
emergence of a GC, exists when the average TF out-degree is above a critical value,
given, for Poisson degree distributions, by (see Appendix B)

c∗2 =
ec1

αc1
. (21)

The percolation threshold for the linear dynamics is found in a similar way in Appendix
B. Here equations (17) and (19) take the same form as (16) and (18), respectively,
and lead to

c∗2 =
1

αc1
. (22)

This generalizes existing results for the percolation threshold in symmetric bipartite
graphs [35, 36], that are retrieved by setting c2 = c1. We note that (22) could also
have been obtained by marginalising the bipartite network over the TFs to obtain an
effective gene-gene interaction network with average degree αc1c2 (as demonstrated in
Appendix A), and then applying known results about percolation in directed graphs
[40]. Indeed, in the absence of inhibitors, the linear dynamics describes the evolution of
a ferromagnet on the marginalised gene-gene interaction network. We note, however,
that this simplification does not arise for the non-linear dynamics.

Plots of the percolation threshold c∗2 for the linear and non-linear dynamics are
shown in fig.4 (left panel). Notably, the region where a GC exists, is much wider for the
linear than for the non-linear dynamics. This is as expected, since to activate a (TF)
node in the non-linear dynamics it is required that all of the neighbouring (gene) nodes
are active. This describes a bootstrap process on directed bipartite graphs. Bootstrap
percolation [43] has been studied extensively on lattices [44, 45, 46, 47], regular graphs
[48, 49], trees [50], and, recently, on complex networks [51, 52], however there are no
exact results on bipartite graphs. The uncovered asymmetry in the roles of c1 and c2,
is remarkably well in line with biological facts [53]. TFs are typically formed by a small
number c1∈{1, 2, 3} of proteins and tend to regulate a large number c2∈{10, . . . , 100}
of genes, while physiological values of α are around one.

Phase diagrams for non-Poissonian degree distributions can be derived directly
from equations (B.3), (B.4) for the non-linear and (B.13), (B.14) for the linear
dynamics, performing the stability analysis in Appendix B, whilst degree correlations
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Figure 4. Left: Average TF out-degree c∗2 at which a giant cluster (GC) emerges
in the directed bipartite network as a function of the average TF in-degree c1 (for
α = 1). The non-linear dynamics allows a GC in the red-shaded region above
the (dashed) line c2 = c1, which is a subset of the region where a GC exists for
the linear dynamics (above the solid black line). Right: Average steady state
fraction of TFs versus their average out-degree c2, in bipartite networks with
Poisson degree distributions and c1 = 1, evolving via nonlinear (black line) and
linear (red line) dynamics, respectively. Solid lines show the analytical solution
(B.10) of equations (20) for the non-linear dynamics, and the solution (B.16) of
the corresponding equations for the linear dynamics. Symbols show simulation
results for N = 2500. The vertical dashed lines indicate the theoretically predicted
percolation thresholds. The inset shows the average steady state gene expression
levels for the same simulations.

can be accounted for in (B.1), (B.2) and (B.11), (B.12), respectively. Non-Poissonian
degree distributions and correlations in the links are expected to impact the phase
diagram, leading to a more complex dependence of the GC on the degree statistics.

Simulation results for the average steady-state fractions of expressed genes 〈ass〉
and synthetised TFs 〈aTF〉 are shown in fig.4 (right panel), for both linear and non-
linear dynamics, for bipartite graphs with N = 2500 and Poisson degree statistics,
initialised in a state where all genes are off and a small number (∼10) of TFs, randomly
selected, are present. Phase transitions occur at the theoretically predicted values of
c∗2. Below the percolation threshold, the network is disconnected, thus introducing a
small set of TFs will only activate a small number of genes, while above the percolation
threshold, this will result in an activation “avalanche”, due to the presence of a GC.
Simulations are in excellent agreement with the theoretically predicted values of g
and t, given, for Poisson distributions, by the analytical expressions (B.10) for the
non-linear dynamics, and (B.16) for the linear dynamics. It is worth noting that,
because the networks generated for simulations were constructed using Poisson degree
distributions, there are more nodes simulated than those that can be interpreted as
regulatory genes or TFs. This is because a regulatory gene must contribute to the
synthesis of at least one TF, i.e. dout

i ≥ 1. In addition, every gene (including regulatory
genes) must be regulated by at least 1 TF, i.e. din

i ≥ 1. Similarly, any TF must be
synthesised by at least one regulatory gene, i.e cinµ ≥ 1, and then can regulate the
expression of any gene either in the regulatory part of the network or outside of this
sub-network, so cout

µ ≥ 0. In fig. 4, both the analytic solutions and the simulation
results take this into account and are normalised by the appropriate probabilities. For
example, 〈aTF〉 is normalised by P (cin > 0). All of these simulations were carried
out deterministically (T = 0) and with no gene-specific thresholds θi = 0 ∀i. In
addition, up until this point, only activating TFs have been included in the dynamics.
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Figure 5. Simulation results for the linear (black) and non-linear (red) dynamics
of bipartite networks with N = 2500, α= 1, c1 = 1, ε = 0.5 and Poisson degree
distribution. Left: fraction of TFs in the steady-state. The fraction of active genes
is shown in the inset. Right: distribution of the overlap qαβ over 150 simulation
runs of the linear (top panel) and non-linear (bottom panel) dynamics for the c2
value highlighted on the left panel. Self-overlaps qαα are not plotted.

The effect of inhibitors will be analysed in the next subsection, where TFs will be
assumed to activate or inhibit their target genes with probability P (ξ = 1) = ε and
P (ξ = −1) = 1− ε respectively.

4.2. The effects of inhibition

In the above derivations, we have assumed that all TFs are activators. The presence
of inhibitors is expected, on general grounds, to shrink the stability region, in the
parameters space, of cellular attractors, and to lower the steady state fractions of
expressed genes and synthetised TFs. This is consistent with simulation results shown
in fig.5 (left panel) for regulatory interactions with nonzero ξµi =±1 equally likely for
all i, µ, i.e. ε = 0.5.

In addition, competition between excitatory and inhibitory interactions is
expected to introduce frustration in the system, as TFs compete to regulate the
same genes in different manners. However, due to the asymmetry of interactions, no
multiplicity of attractors is expected [54, 55, 56, 57]. This is confirmed by computing
the distribution of overlaps qαβ between the steady-state TF trajectories attained in
different simulations of the same network, for different initial conditions (i.e. sets of
4 randomly selected TFs). The overlap, measuring the similarity of the steady-state
TF profiles between two simulation runs, α and β, is defined as qαβ = q̃αβ/

√
q̃ααq̃bb,

where

q̃αβ =
1

P

∑
µ

(〈τ̄µ〉α − aα, ) (〈τ̄µ〉β − aβ) , (23)

〈. . .〉α denotes the time average in the steady state of simulation run α and τ̄µ indicates
whether a TF has been synthesised or not. In the above,

aα =
1

P

∑
µ

〈τ̄µ〉α , (24)

so that the overlap is defined as a Pearson correlation coefficient, taking values in
[−1, 1]. When β = α, qαα = 1 and the TF profiles are identical. Any value of qαβ 6= 1
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indicates that there is a difference in the steady-state TF profiles between different
simulation runs. The overlap distribution P (qαβ) is shown in the right panels of fig.5
for both the linear (top panel) and the non-linear (bottom panel) dynamics. This was
computed for M = 150 different simulations for an arbitrary point in the parameter
space above c∗2, ensuring that the network has a non-zero 〈aTF〉, for both versions of
the dynamics. The plot does not show the self-overlaps (qαα = 1), in order to focus
on overlaps between different simulation runs. For both the linear and non-linear
dynamics the distribution of overlaps has a single peak at qαβ = 1. This implies that
despite the SG characters of interactions, in both types of dynamics, each network
supports a single attractor.

Figure 6. The probability density function of the overlap between the same
150 simulations of the non-linear deterministic gene regulatory dynamics on a
fixed network with c1 = 1, c2 = 10, ε = 0.5. The different distributions arise
from different time windows over which the steady state dynamics was averaged:
∆t = 500 (top), ∆t = 2, 000 (middle), ∆t = 4, 500 (bottom).

Looking closer at the structure of the probability density function (pdf) of the
overlap, near qαβ = 1, shows that the distribution is not a perfect δ-function at
exactly qαβ = 1. However, increasing the time window over which the steady state
average is performed moves the mass of the pdf towards qαβ = 1, suggesting the
existence of a single limit cycle attractor that either has a long period or a short
period that is traversed many times (figure 6). The period can be inferred from the
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Figure 7. Empirical cumulative distribution functions (CDFs) of the steady
state frequency that a TF is synthesised in bipartite networks with different
connectivities and ε = 0.5, for non-linear (left panels) and linear (right panels)
dynamics. Top panels: c2 = 100. Bottom panels: c1 = 4.

average deviations of the overlap from qαβ = 1, as shown in Appendix C. Results
suggest the existence of a single limit cycle with a short period. This is supported
by a recent study [58] where the effect of dilution and asymmetry of interactions on
the mean number and mean length of limit cycles attractors was explored numerically
in neural network models analogous to the linear dynamics considered in this work.
Similarly to what is observed in random Boolean networks and diluted neural networks
[12, 59], the study suggests that increasing the asymmetry of interactions dramatically
decreases the number of limit cycle attractors, whilst increasing the sparsity of the
interactions decreases the length of the limit cycles. It is also shown that there is a
dramatic decrease in the mean number of attractors as the interactions become very
sparse. However, at high levels of dilution, this may be due to the lack of a GC in the
networks.

The impact of the connectivities c1, c2 and of the bias ε on the trajectories is shown
in Fig. 7 and 8, respectively, where empirical cumulative distribution functions (CDF)

of the steady state frequency of TF synthesis, 〈τ̄µ〉 = 1
∆t

∑t′+∆t
t=t′ τ̄µ(t) are plotted for

the linear (left panels) and non-linear dynamics (right panels). In the non-linear
dynamics, increasing c1 decreases the likelihood that each TF will be synthesised, for
any choice of ε, while in the linear dynamics the opposite is true, i.e. increasing c1
increases the probability that a TF is expressed in the steady state (top panels of Fig.
7). On the other hand, increasing c2 has a remarkably small effect in both dynamics
(bottom panels). Finally, increasing ε increases the frequency with which each gene is
expressed, and thus each TF is synthesised in the steady state (Fig. 8).



Percolation in bipartite Boolean networks and its role in sustaining life 14

Figure 8. Empirical CDF of the steady state frequency with which TFs are
synthesised, using the linear (left) and non-linear (right) dynamics on a network
with (c1, c2) = (1, 10) at T = 0. As the bias towards activation increases the
number of TFs which are always expressed increases.

Because any given network with a giant cluster was observed to support a single
gene expression profile in the steady state, this may suggest that different cell types
may require different networks, e.g. different rates of protein production, degradation
and TF binding affinities. However, we note that a multiplicity of states can also be
likely achieved by the same network, with a different prescription for the regulatory
interactions ξµi (that here have been set to 0,±1). Indeed the current choice is only
a subset of the possible regulatory interactions that can arise in random Boolean
networks, where a multiplicity of states is observed. We intend to investigate this in
greater detail in future work.

5. Summary and Outlook

GRNs and transcription networks have been traditionally studied separately,
although they are deeply related. Models of GRNs, including Boolean networks
and neural networks, have been successful in capturing different aspects of gene
expression dynamics, however they provide little insight into the biological mechanism
underpinning the existence of cellular attractors. In this work, we have proposed a
bipartite Boolean modelling approach to gene regulation, which integrates regulatory
genes and TFs into a single bipartite network, with sparse and directed links, encoding
two fundamental aspects of cell biology, i.e. gene expression (of proteins forming
TFs) and regulation of genes (by TFs). The resulting dynamics is highly non-linear
and it describes a Bootstrap process, where several genes have to be simultaneously
expressed to synthetise a TF. In order for such non-linear dynamics to sustain a
non-trivial gene expression profile under noisy conditions characteristic of biological
systems, the combined network of genes and TFs needs to have a giant component.
This requires TFs to be typically small protein complexes that regulate many genes.
This condition is remarkably well in line with biological findings and it is at the root
of reprogramming experiments, where a small set of TFs is observed to drastically
change the gene expression profile of a cell.

There are several pathways for future work. Firstly, only deterministic dynamics
has been studied in this work, so stochasticity effects should be considered in future
studies. These are expected to restrict the range, in the parameter space, where a
“frozen” phase with non-trivial gene expression profiles emerges, however, stochasticity
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may also enrich the range of behaviours supported in the frozen phase. Furthermore,
the assumption that η and ξ are statistically independent was made. This may not
be true, in particular cin and cout might be correlated, as the number of DNA binding
sites may increase with the size of a TF, hence the inclusion of correlations may make
the model more realistic. Also, the model does not take into account the effects of
external signals (e.g. morphogen gradients and cell-cell interactions), which could be
included, in future developments, via additional external fields. In our view, the most
fruitful advancement of this model would be the introduction of suitable weights for
the regulatory interactions, that are able to embed a multiplicity of attractors, as it
is required for multi-cellular life. Another possibility is to investigate this model on
temporal networks where edges evolves in response to variations in the rates for protein
synthesis/degradation and TF binding affinities. This may also create a multiplicity of
attractors. In addition, if such values were dependent on gene expression profiles it may
be possible for the dynamics to traverse from one attractor to another, encapsulating
changes in cell state, for example, due to differentiation.

Finally, from a more theoretical point of view, the giant component considered
in this work corresponds to the out-component of the strongly connected component,
traditionally defined in directed graphs [39]. Existing studies [39, 40] suggest that
the condition for the emergence of a giant out-component is identical to the one for
the in-component. However, this equivalence is only expected to hold for the linear
dynamics. Thus, it would be an interesting pathway for future work to compare these
conditions for the non-linear dynamics, where the concept of in-component generalizes
less easily.
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Appendix A. General bipartite graph ensembles

We have restricted ourselves to Poisson graph ensembles for simplicity, however our
analysis can be easily extended to graph ensembles with arbitrary in- and out-degree
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sequences

p(η) =
∏
i,µ

[
cinµ d

out
i

N〈dout〉
δηµ
i
,1 +

(
1−

cinµ d
out
i

N〈dout〉

)
δηµ
i
,0

]

p(|ξ|) =
∏
i,µ

[
cout
µ din

i

N〈din〉
δ|ξµ

i
|,1 +

(
1−

cout
µ din

i

N〈din〉

)
δ|ξµ

i
|,0

]
. (A.1)

Here δx,y is the Kronecker delta and factorisation over i and µ follows from the
assumption that the edges in the network are independent. In large graphs drawn
from ensemble (A.1), each gene in-degree din

i (ξ) is a Poissonian variable with average
din
i and each TF in-degree cinµ (η) is a Poissonian variable with average cinµ (similarly

for the out-degrees). In what follows, we will assume that the degree sequences
are drawn from arbitrary distributions pd(d

in, dout) = N−1
∑
i δdin,dini δdout,d

out
i

and

pc(c
in, cout) = P−1

∑
µ δcin,cinµ δcout,coutµ

, with averages d1 = 〈dout〉, d2 = 〈din〉,
c1 = 〈cin〉, c2 = 〈cout〉. The Poissonian case considered in the main text corresponds
to the choice cinµ = c1, c

out
µ = c2 ∀ µ and din

i = d2, d
out
i = d1 ∀ i. For the

general ensemble (A.1), equations (B.3), (B.4), (B.13), (B.14) remain valid, but apply
to the distributions P in

d (d) = N−1
∑
i πdini (d) and P in

c (c) = P−1
∑
µ πcinµ (c), where

πc(k) = e−cck/k! is the Poissonian distribution with average c.

Appendix A.1. Degree distribution for gene-gene interaction networks

Transcription factors act as intermediaries in a gene-regulatory network. An effective

gene to gene interaction network can be obtained as Aij = Θ
[∑

µ η
µ
i |ξ

µ
j |
]
, i.e. by

integrating out the TFs (as done similarly in [39, 60, 61, 62]). Here, a directed edge
exists from i to j (Aij = 1) if gene i expresses a protein forming a TF that regulates
gene j. The distribution of the in- and out-degrees in the “projected” gene-gene
interaction network can be calculated as follows. For the out-degrees we have:

pout(k) =

〈
1

N

∑
i

δk,
∑

j
Aij

〉
η,ξ

(A.2)

where the average is taken over (A.1). Using the Fourier represenation of δ-functions

pout(k) =
1

N

∑
i

∫
dω

2π
eiωk〈e−iω

∑
j
Aij 〉η,ξ. (A.3)

One can simplify the calculation by replacing the binary link Aij = Θ[
∑
µ η

µ
i |ξ

µ
i |] with

the weighted link Ãij =
∑
µ η

µ
i |ξ

µ
i |. This approximation is exact to O(N−1) as the

probability that Ãij > 1 is O(N−2), as shown below:

p(Ãij) = 〈δÃij ,
∑

µ
ηµ
i
|ξµ
j
|〉 =

∫
dω

2π
eiωÃij 〈e−iω

∑
µ
ηµ
i
|ξµ
j
|〉η,ξ

=

∫
dω

2π
eiωÃij

∏
µ

〈ηµi |ξ
µ
j |e
−iω + 1− ηµi |ξ

µ
j |〉η,ξ

=

∫
dω

2π
eiωÃij

∏
µ

[
dout
i cinµ

N〈dout〉
din
j c

out
µ

N〈din〉
(e−iω − 1) + 1

]

=

∫
dω

2π
eiωÃije

∑
µ

dout
i

cinµ

N2〈dout〉

din
j
coutµ

〈din〉
(e−iω−1)+O(N−2)

,
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where the sparse nature of the graph was used to exponentiate in the last line.
Expanding the exponential and using the definition of the δ-function

p(Ãij) = δÃij ,0

[
1−

∑
µ

dout
i din

j c
out
µ cinµ

N2〈dout〉〈din〉

]
+ δÃij ,1

[∑
µ

dout
i din

j c
out
µ cinµ

N2〈dout〉〈din〉

]
+O(N−2)

shows that p(Ãij > 1) = O(N−2), hence to order N−1, p(Ãij) = p(Aij), and averages

of Aij can be replaced with averages of Ãij . Thus,

〈e−iω
∑

j
Aij 〉η,ξ =

∏
µ

〈e−iωηµ
i

∑
j
|ξµ
j
|〉η,ξ (A.4)

=
∏
µ

[
1 +

dout
i cinµ

N〈dout〉

(
〈e−iω

∑
j
|ξµ
j
|〉 − 1

)]

=
∏
µ

1 +
dout
i cinµ

N〈dout〉

∏
j

[
1 +

din
j c

out
µ

N〈din〉
(
e−iω − 1

)]
− 1


=
∏
µ

1 +
dout
i cinµ

N〈dout〉

exp

{
1

N

∑
j

din
j c

out
µ

〈din〉
(
e−iω − 1

)}
− 1


=
∏
µ

[
1 +

dout
i cinµ

N〈dout〉
(
exp{cout

µ (e−iω − 1)} − 1
)]

= exp

{
1

N

∑
µ

dout
i cinµ
〈dout〉

(
exp{cout

µ (e−iω − 1)} − 1
)}

= e
−dout
i

α〈cin〉

〈dout〉 e
αdout
i

〈dout〉 〈c
inec

out(exp(−iω)−1)〉
,

where, the average 〈cinecout(exp(−iω)−1)〉 is taken over the joint distribution p(cin, cout).
Substituting this result into our expression for pout(k) gives

pout(k) =
1

N

∑
i

e−d
out
i

∫
dω

2π
eiωk exp

[
αdout

i

〈dout〉
〈cinec

out(e−iω−1)〉
]

Upon introducing the marginal distribution pout
d (dout) =

∑
din p(d

in, dout) and
assuming independence of TF in- and out-degrees, p(cin, cout) = pin

c (c)pout
c (c), one

gets, using conservation of links 〈dout〉 = α〈cin〉

pout(k) =
∑
d

e−dpout
d (d)

∫
dω

2π
eiωk exp

[
d
〈
exp

(
cout(e−iω − 1)

)〉]
=
∑
λ

1

λ!

∑
d

dλe−dpout
d (d)

∫
dω

2π
eiωk

[∑
c

pout
c (c) exp

(
c(e−iω − 1)

)]λ

=
∑
λ

1

λ!

∑
d

pout
d (d)dλe−d

∑
c1...cλ

pout
c (c1) . . . pout

c (cλ)

∫
dxδ

(
x−

λ∑
r=1

cr

)
e−x

xk

k!

Thus, the out-degree distribution in the effective gene-gene interaction network is
related to the distribution of TF promiscuities pout

c (c) via

pout(k) =

∫
dxe−x

xk

k!
P (x) ,
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with

P (x) =
∑
d

pout(d)e−d
∑
λ≥0

dλ

λ!

∑
c1...cλ

pout(c1) . . . pout(cλ)δ

(
x−

λ∑
r=1

cr

)
.

Clearly, the out-degree distribution is normalised
∑
k≥0 pout(k) = 1 and its average is

〈kout〉 =
∑
k≥0

kpout(k) =

∫ ∞
0

dxP (x)e−xx
∑
k≥0

xk−1

(k − 1)!

=

∫ ∞
0

xP (x)dx =
∑
d

pout(d)e−d
∑
λ≥0

dλ

λ!

∑
c1...cλ

pout(c1) . . . pout(cλ)
∑
r≤λ

cr

=
∑
d

pout(d)e−d
∑
λ≥0

dλ

λ!
λ
∑
c

pout(c)c = 〈cout〉〈dout〉 = αc1c2.

(A.5)

It can be shown in a similar fashion that the in-degree distribution for the effective
gene-gene interaction network is related to the distribution of TF sizes pin

c (c) via

pin(k) =

∫
dye−y

yk

k!
P (y) ,

with

P (y) =
∑
d

pin(d)e−d
∑
λ≥0

dλ

λ!

∑
c1...cλ

pin(c1) . . . pin(cλ)δ

(
y −

λ∑
r=1

cr

)
.

As before, one can easily show that 〈kin〉 = αc1c2 ≡ 〈kout〉, as it should. For the
Poissonian ensemble considered in the main text, where pin

c (c) = δc,c1 , pout
c (c) = δc,c2 ,

pin
d (d)=δd,d2 and pout

d (d)=δd,d1 , the above expressions simplify to

pout(k) = e−d1
∑
`

d`1
`!
e−`c2

(`c2)k

k!
=
∑
`

πd1(`)π`c2(k) (A.6)

pin(k) = e−d2
∑
`

d`2
`!
e−`c1

(`c1)k

k!
=
∑
`

πd2(`)π`c1(k) (A.7)

where πc(k) is the Poissonian distribution with average c.

Appendix B. Percolation thresholds

Here the critical value c∗2 of the TF out-degree, above which a giant cluster (GC)
will exist in the bipartite network, is calculated for both the nonlinear and the linear
dynamics.

Appendix B.1. Non-linear dynamics

In the construction of the cavity graph for n
(i)
µ , as given in (19), one removes the gene

i connected to TF µ via an η-edge. Given that, from (16), gene i is connected to TF µ
via ξµi , the likelihood that gene i is also connected to TF µ via an η-edge is O(N−1),
due to the sparsity of links. In particular, for TF µ to belong to the GC in the cavity
graph, where its successor i has been removed, all of the cinµ predecessors of µ must be
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in the GC. Averaging (19) over all possible TFs that have i as a successor (i.e. have
a link that terminates at node i) leads to

t̃ =
∑
cout

P out
c (cout)

cout

〈cout〉

∞∑
cin=1

P (cin|cout)g̃c
in

, (B.1)

where the average is taken over the likelihood P out
c (cout)cout/〈cout〉 to pick up a

predecessor of i with out-degree cout and in-degree cin conditional on the out-degree.
Similarly, the probability for a gene to belong to the GC in the cavity graph, where
its successor µ has been removed, is found averaging (18)

g̃ =
∑
dout

P out
d (dout)

dout

〈dout〉

∞∑
din=1

P (din|dout)
[
1−

(
1− t̃

)din]
. (B.2)

Under the assumption of independence of in- and out-degrees P (din|dout) = P in
d (din)

and P (cin|cout) = P in
c (cin), one obtains

g̃ =

∞∑
d=1

P in
d (d)

[
1−

(
1− t̃

)d]
(B.3)

t̃ =

∞∑
c=1

P in
c (c)g̃c. (B.4)

Therefore, the cavity probability t̃ = 〈n(i)
µ 〉 is equal, up to differences O(N−1), to

t = 〈nµ〉 and the same holds true for g̃ = 〈n(µ)
i 〉 and g = 〈ni〉. Upon introducing

the generating functions G(d)(x) =
∑
k P

in
d (k)xk, G(c)(x) =

∑
k P

in
c (k)xk, the above

equations take the compact form

g̃ = 1−G(d)(1− t̃) ≡ f1(t̃, g̃) (B.5)

t̃ = G(c)(g̃) ≡ f2(t̃, g̃). (B.6)

Similarly, g and t are found from (20).
The point (g̃, t̃) = (0, 0) is always a solution to these equations, corresponding

to the situation where there is no GC in the network. Thus, the point at which this
solution is no longer stable, will be the point at which a giant cluster emerges in the
network. Denoting x = (g̃, t̃)T , and expanding the above equations around the fixed
point, gives x = Jx, where J is the Jacobian evaluated at the fixed point

J =
∂ [f1, f2]

∂
[
g̃, t̃
] |(g̃,t̃)=(0,0) (B.7)

The solution (g̃, t̃) = (0, 0) is stable provided that |J| < 1. Taking partial derivatives
of (B.5) and (B.6), one has∣∣J∣∣ =

∣∣∣∣ 0 〈din〉
P in
c (c = 1) 0

∣∣∣∣ . (B.8)

Hence, for Poisson degree distributions, P in
d (d) = πd2(d) and P in

c (c) = πc1(c), a GC
will exist in the network if

| − αc2c1e−c1 | ≤ 1. (B.9)

This gives the percolation threshold (21) for the non-linear dynamics of the bipartite
Boolean network. For Poisson degree distributions, the averages in (B.5) and (B.6)

can be calculated exactly by using exp(x) =
∑∞
k=0

xk

k! and d2 = αc2, to find

g = g̃ = 1− e−αc2 t̃, t = t̃ = ec1(g̃−1) − e−c1 . (B.10)

These curves are plotted in figure 4.
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Appendix B.2. Linear dynamics

The percolation threshold for the linear dynamics can be found following a similar
line of reasoning to that for the non-linear dynamics. The key difference is that there
is no longer a hard constraint requiring that for a TF to belong to the GC, all the
genes contributing to it must belong to it as well. Instead it is sufficient that at least
one of the genes contributing to a TF belongs to the GC. Thus, the equations for the
genes’ and TFs’ indicator variables become symmetric and one obtains for the cavity
probabilities,

g̃ =
∑
dout

P out
d (dout)

dout

〈dout〉

∞∑
din=1

P (din|dout)
[
1−

(
1− t̃

)din]
(B.11)

t̃ =
∑
cout

P in
c (cout)

cout

〈cout〉

∞∑
cin=1

P (cin|cout)
[
1− (1− g̃)

cin
]

(B.12)

which simplify, under the assumption of independence of in- and out-degrees, to

g̃ =

∞∑
d=1

P in
d (d)

[
1−

(
1− t̃

)d]
(B.13)

t̃ =

∞∑
c=1

P in
c (c) [1− (1− g̃)

c
] . (B.14)

The point (g̃, t̃)=(0, 0) is still a solution. Evaluating the Jacobian at this point gives

J =

(
0 〈din〉
〈cin〉 0

)
(B.15)

which only depends on the averages 〈din〉 = d2 and 〈cin〉 = c1 of the in-degree
distributions. Hence, this gives d2c1 ≥ 1 as a general condition for the existence of
a giant component, which is valid for arbitrary in-degree distributions P in

d (d), P in
c (c).

Using conservation of links d2 = αc2, this gives rise to the percolation threshold (22)
for the linear dynamics. The probabilities that a gene or TF belong to the giant
cluster, can again be calculated explicitely for the Poissonian case, giving

g = g̃ = 1− e−αc2 t̃, t = t̃ = 1− e−c1g̃ (B.16)

and have been plotted in figure 4.

Appendix C. Inferring the length of attractors

In this appendix, it is demonstrated how one can infer the length of a limit cycle
attractor of the dynamics, from the overlap distributions in Fig. 6, obtained for
simulations on a network with (c1, c2, ε) = (1, 10, 0.5). If we assume that the transient
to the steady state is short on this network as generally demonstrated for increasing
connectivity in figure 3, then the dynamics will converge to the limit cycle attractor
in O(1) time steps. Next, if the time window ∆t used to perform the average over the
steady state is much greater than the length of the limit cycle `, the limit cycle will
be fully traversed N∆t times. There can also be a fraction of the limit cycle length x
traversed in each ∆t as well as the N∆t full cycles giving ∆t = ` (N∆t + x). Over many
simulation runs the average of x would be expected to be 〈x〉 = 0.5. If the probability
that any gene in the network is expressed is given by a then the probability that a
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∆t ≈ 〈∆q〉 `
500 2.3× 10−3 4.6

2, 000 6.3× 10−4 5.0
4, 500 2.6× 10−4 4.7

Table C1. Length of limit cycle attractors inferred from mean deviation from
qαβ = 1 in distributions of the overlap using different time windows for the steady
state averaging.

gene is expressed differently in a different simulation run β is given by 2a(1−a). Then
the average deviation in the overlap from qαβ = 1 is given by

〈∆q〉 =
2a(1− a)x`

∆t
, (C.1)

where x` is the number of sites on which there is a difference in gene expression
between simulation runs. Using this expression for 〈∆q〉 and the mean values of the
deviation from qαβ = 1 in figure 6 one can infer the length of the limit cycle attractor
for that network shown in the table C1. There is also an O(1/N) effect on the overlap
of the initially introduced TFs hitting finite clusters that are able to sustain a net
steady state gene expression level alongside the contribution from the giant cluster.
Therefore, the network used to construct the overlap distributions in figure 6 likely
has an attractor that is a limit cycle of length ` ' 5. However, this periodicity is
difficult to identify directly from trajectories of the dynamics.


