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Large deviations of the finite-time magnetization of the Curie-Weiss random-field Ising model
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We study the large deviations of the magnetization at some finite time in the Curie-Weiss random field
Ising model with parallel updating. While relaxation dynamics in an infinite-time horizon gives rise to unique
dynamical trajectories [specified by initial conditions and governed by first-order dynamics of the form mt+1 =
f (mt )], we observe that the introduction of a finite-time horizon and the specification of terminal conditions
can generate a host of metastable solutions obeying second-order dynamics. We show that these solutions are
governed by a Newtonian-like dynamics in discrete time which permits solutions in terms of both the first-order
relaxation (“forward”) dynamics and the backward dynamics mt+1 = f −1(mt ). Our approach allows us to classify
trajectories for a given final magnetization as stable or metastable according to the value of the rate function
associated with them. We find that in analogy to the Freidlin-Wentzell description of the stochastic dynamics
of escape from metastable states, the dominant trajectories may switch between the two types (forward and
backward) of first-order dynamics. Additionally, we show how to compute rate functions when uncertainty in the
quenched disorder is introduced.
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I. INTRODUCTION

Disordered systems are characterized by large fluctuations
in their physical observables induced by the presence of
quenched randomness. This creates a situation where not only
average physical quantities and the variances of fluctuations
about these averages are of interest, but their entire distribution
has physical relevance. In this context, the study of large
deviations arises naturally [1,2], and their applicability is very
general [3]. As a result, the topic has attracted much attention
in recent years in a diversity of fields, including spin glasses
[4–6], kinetically constrained models [7,8], random matrix
theory [9–11], and epidemic spreading on networks [12,13].

The study of large deviations also has economic importance
[14]: it is vital, for example, for an insurer to estimate the
likelihood of situations in which large numbers of indemnities
may have to be paid at once. From the regulator’s perspective,
understanding how often large-scale crises may occur in a
given regulatory scenario is key to proper risk-management
policy. But while attempts at studying rare events in semi-
realistic credit risk models have been made [15], computing
large-deviation functions has proven too difficult due in part
to the presence of quenched disorder.

This difficulty motivates the study of simple models with
quenched disorder for which a complete analysis of dynamical
large deviation properties is possible and which could therefore
be used as testbeds for approximation methods. Of such simple
models, the Ising model is the prototypical example. Recently,
the large deviations of the Ising model have received great
attention, e.g., studies of the large deviations of the energy
in the 1D Ising chain, or of the activity (the number of
times a spin flips in a given trajectory), as in Refs. [16,17].
A natural extension of the Ising model to include quenched
disorder is the random-field Ising model (RFIM). The large
deviations of the equilibrium magnetization have long been
well understood [18,19] and have proven a useful tool in
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understanding the phase diagram of the model. To the best
of our knowledge, however, no studies of the large deviations
of the finite-time magnetization in the RFIM have been made
even in its simplest (Curie-Weiss) description. Yet it is of clear
interest to have a simple but nontrivial model with disorder
that admits closed-form solutions against which to test our
intuition and approximate methods.

In this article, we thus treat the large deviations of the finite-
time magnetization in the Curie-Weiss random field Ising
model with parallel updating. Using generating functional
methods, we derive equations of motion that include the value
of the magnetization at a finite time as a constraint and find that
it can be recast in a language reminiscent of Newtonian dy-
namics in discrete time. This language also arises naturally as
a zero-noise limit of Langevin dynamics, where the magnitude
of the noise scales like N−1/2, with N the system size.

The remainder of this paper is organized as follows: we
introduce the model and our main notations, then introduce a
discrete time path integral formalism from which we derive
saddle-point equations. We analyze these equations and find
nontrivial fixed points (i.e., fixed points that are not equilibrium
solutions) and find them to be elliptical. We then derive
Newtonian-like dynamics for the system at the saddle point.
We derive rate functions and compare them with explicit
simulations for small numbers of time steps (T = 50) in the
ferromagnetic parts of the phase diagram. Finally, we show
how to incorporate uncertainty in the disorder and derive the
associated rate function.

II. MODEL

We investigate the parallel dynamics of the Curie-Weiss
RFIM, where the transition probabilities between configura-
tion {σi}i=1,N and {σ ′

i }i=1,N
is given by

W ({σ ′
i }|{σi}) =

∏
i

eβσ ′
i (Jm+hθi )

2 cosh[β(Jm + hθi)]
, (1)

where m = N−1∑
i σi is the magnetization of configuration

{σi}, and the θi are random fields that take value in {±1}. We
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take J = 1 without loss of generality and assume the initial
spins are independent and identically distributed: P ({σi0}) =∏

i p0(σi0). We parametrize the distribution of initial spins as
p0(σ ) = 1+σr0

2 .
In most of our exposition, we will assume the random fields

configuration to be fixed. We write 〈· · · 〉 the average with
respect to the dynamics in Eq. (1), and by 〈· · · 〉θ the empirical
average with respect to the random fields:

〈g(θ )〉θ ≡ 1

N

∑
i

g(θi) = N+
N

g(1) +
(

1 − N+
N

)
g(−1),

(2)

where N+ is the number of sites i such that θi = +1. We
will assume N+

N
= 1

2 + O( 1√
N

) in all subsequent numerical
applications unless otherwise specified; i.e., we assume that
the disorder configuration is typical for a symmetric random
field configuration.

With such a setup, the probability of a sequence of
configurations {σit } is given by

P ({σit }) =
T∏

t=1

W ({σit }|{σi(t−1)})
∏

i

p0(σi0). (3)

At large times, the probability distribution of the magnetization
is well-known as the equilibrium dynamics are governed by
Peretto’s pseudo-Hamiltonian ([20,21]),

Hβ(σ ) = − 1

β

∑
i

log[2 cosh(β[m + hθi])] − h
∑

i

σiθi,

(4)

which gives the rate function

Iβ(m) = lim
N→∞

− 1

N
log P

(
1

N

∑
i

σi = m

)
(5)

= sup
x

{xm − 〈log[cosh(βhθ + x)]〉θ }

− 〈log[cosh(β[hθ + m])]〉θ + I0. (6)

Here, I0 is a constant chosen such that min
m

{Iβ (m)}=0. Such rate
functions are plotted in Fig. 1.

But the understanding of the equilibrium distribution alone
may not be sufficient in many problems and provides no way
to estimate, e.g., the equilibration time. To remedy this, we
compute the large deviation functions of the magnetization at
finite times.

It is not harmless, in this setting, to assume a fixed
typical random field configuration: if we assume a binomial
distribution in the random fields (e.g., if the random fields at
each site are independently distributed), a fluctuation of order
O(1) in the fraction of sites with θi = +1 is exponentially
suppressed to the same extent as the fluctuations in the
magnetization whose probability we are trying to compute.
In other words, in the absence of prior knowledge (e.g., in
the absence of a large number of prior measurements) the
observation of an anomalous magnetization is equally likely
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FIG. 1. Peretto rate functions in the paramagnetic ((a), β = 0.67,
h = 0.2) and ferromagnetic ((b), β = 2.5, h = 0.4) parts of the phase
diagram.

to be a rare result of the dynamics as it is to be the signature of
an anomalous sample. We will show in our last section how to
compute rate functions in this situation.

III. DYNAMICS OF THE MAGNETIZATION

We seek to compute the large deviation rate function of the
magnetization mT for some finite T .

A. Trajectory probability

Writing m = (mt )t=0,··· ,T , magnetization path probabilities
are given by

P (m) =
〈∏

t

δ

(
mt − 1

N

∑
i

σit

)〉
(7)

=
∑
{σit }

∏
i

p0(σi0)
T∏

t=1

[
eβ(σitmt−1+hθiσit )

2 cosh [β(mt−1 + hθi)]

]

×
T∏

t=0

δ

(
mt − 1

N

∑
i

σit

)
. (8)
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We insert the integral representation δ(x) = ∫ dy

2π
eixy at every

time step:

P (m) =
∑
{σit }

eNβ
∑T

t=1 mtmt−1
∏

i

p0(σi0)

×
T∏

t=1

eβhθiσit

2 cosh [β(mt−1 + hθi)]

[
N

2π

]T +1

×
∫

dm̂ exp

{
−im̂ ·

(
Nm −

∑
i

σ i

)}
, (9)

where we write m̂ = (m̂t )t=0,··· ,T and (σ )i = (σit )t=0,··· ,T . This
representation allows for the decoupling of the sum over
microstates {σit } with respect to the sites i, and thus P (m)
can be expressed as

P (m) =
[

N

2π

]T +1 ∫
dm̂ exp

{
−iNm̂ · m + Nβ

T∑
t=1

mtmt−1

−
∑

i

T∑
t=1

log [2 cosh (β[mt−1 + hθi])]

}

×
∏

i

∑
{σit }

p0(σi0)eim̂0 exp {σt (θi + im̂t )} (10)

and can be expressed as a discrete time path integral,

P (m) =
[

N

2π

]T +1 ∫
dm̂ exp

{
−iNm̂ · m + βN

T∑
t=1

mtmt−1

+ N

T∑
t=0

〈log [Zt (θ )]〉θ
}

, (11)

with

Z0(θ ) =
√

1 − r2
0

cosh [ρ + im̂0]

cosh [β(m0 + hθ )]
, (12)

Zt (θ ) = cosh [im̂t + βhθ ]

cosh [β(mt + hθ )]
, 1 � t � T − 1, (13)

ZT (θ ) = cosh [im̂T + βhθ ], (14)

where ρ = tanh−1 (r0).

B. Final magnetization

To find the marginal probability of the final magnetization
mT , we integrate over the rest of the trajectory. This gives

P (mT ) ∝
∫ [T −1∏

t=0

dmt dm̂t

]
dm̂T exp {−N�(m,m̂)}, (15)

with

�(m,m̂) =
T∑

t=0

im̂tmt − β

T∑
t=1

mt−1mt −
T∑

t=0

〈log [Zt (θ )]〉θ .

(16)

The integral in Eq. (15) can at large N be evaluated by
the saddle-point method. At the saddle point, we have the

following conditions: at t = 0

m0 = tanh [ρ + im̂0], (17)

im̂0 = β(m1 − 〈tanh [β(m0 + θ )]〉θ ), (18)

for 1 � t � T − 1:

mt = 〈tanh [im̂t + βhθ ]〉θ , (19)

im̂t = β(mt−1 + mt+1 − 〈tanh [β(mt + θ )]〉θ ), (20)

and at t = T ,

mT = 〈tanh[im̂T + βhθ ]〉θ . (21)

Thus, the rate function for the final magnetization mT reads

I (m) = − lim
N→∞

1

N
log P (mT = m) = �(m∗,m̂∗)|m∗

T =m,

(22)

where starred quantities denote saddle-point values.

C. Finite-time solutions

To simplify our expressions, we introduce the notations

f (x) = 〈tanh [β(x + hθ )]〉θ , (23)

f0(x) = tanh [ρ + βx], (24)

likewise,

F (x) = 〈log[cosh(β(x + hθ ))]〉θ , (25)

F0(x) = 1
2 log

(
1 − r2

0

)+ log [cosh (ρ + βx)], (26)

finally,

f̃ (x) =f (x) + f −1(x), (27)

f̃0(x) =f −1
0 (x) + f (x). (28)

Using these notations, the equations of motion, Eqs. (17)–(21),
are rewritten as

m0 =f0(iβ−1m̂0), (29)

im̂0 = β(m1 − f (m0)), (30)

mt =f (iβ−1m̂t ), (31)

im̂t = β(mt−1 + mt+1 − f (mt )), (32)

mT =f (iβ−1m̂T ). (33)

We can insert the equations for the im̂t quantities in the
equations for the mt , and using the fact that both f and f0

are invertible (see Appendix), we obtain

m1 = f̃0(m0), (34)

mt+1 + mt−1 = f̃ (mt ), (35)

im̂T = f −1(mT ), (36)
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and we can rewrite the � function at the saddle point in m̂ as
a function of m only:

ω(m) ≡ �(m,m̂∗)

=
T∑

t=0

im̂tmt − β

T∑
t=1

mt−1mt + F (m0) − F0(iβ−1m̂0)

+
T −1∑
t=1

[F (mt ) − F (iβ−1m̂t )] − F (iβ−1m̂T ) (37)

=
T∑

t=1

[βmt (f
−1(mt ) − mt−1) + F (mt ) − F (f −1(mt ))]

+F (m0) − F0
[
f −1

0 (m0)
]+ βm0f

−1
0 (m0) − F (mT )

(38)

= ω0(m0) + ω(m|m0,m), (39)

where

ω0(m0) = βm0f
−1
0 (m0) − F0

[
f −1

0 (m0)
]

(40)

ω(m|m0,m) =
T∑

t=1

[βmt (f
−1(mt ) − mt−1) + F (mt )

− F (f −1(mt ))] + F (m0) − F (mT ). (41)

In Eq. (38), ω0 appears naturally as the influence of the
distribution of the initial magnetization, while ω(m|m,m0) is
the conditional contribution given the starting and end-points
m0 and m.

Solutions to Eq. (35) can be parametrized via any choice of
two points on the trajectory, although not all choices lead
to physical trajectories (i.e., |mt | < 1 for all t). With the
additional constraint of Eq. (34) and since mT is fixed, we
expect there to be only a finite number of possible solutions.
Equation (36), meanwhile, has no effect on the trajectories
themselves, it only intervenes in the computation of �.

Moreover, we notice that Eq. (35), which can be considered
the proper “equation of motion” of the system, include the
“unconstrained” dynamics as solutions: the unconstrained (or
average) equations of motions being

mt+1 = f (mt ). (42)

Moreover, Eq. (35) is time-reversal invariant, and thus the
time-reversed trajectories

mt+1 = f −1(mt ) (43)

are also valid solutions when far from t = 0.

IV. EFFECTIVE DYNAMICS

A. Quasi-Newtonian dynamics

Given Eqs. (34) and (35), the dynamics of the system can
be recast into a form reminiscent of Newtonian dynamics:


2
t m ≡ (mt+1 − mt ) − (mt − mt−1) = k(mt ), (44)

where we recognize in the left-hand side a discrete time second
derivative and write

k(x) = f̃ (x) − 2x. (45)

In Figs. 2 and 3 we plot phase portraits of trajectories
corresponding to solutions of Eq. (35). We compute the
trajectories by specifying m0 and m1, taken from a uniform
grid in [−1,1]2, and computing the values of the subsequent
magnetization according to Eq. (35). A subset of these
solutions represent solutions of the full system Eqs. (34) and
(35) for suitably chosen mT and r0. Additionally, we plot
the relaxation dynamics map mt+1 = f (mt ) and the diagonal
mt+1 = mt to highlight the corresponding equilibrium fixed
points. Since we are dealing with discrete dynamics, it is
natural to plot the “momentum” mt+1 − mt as a function of
the average position mt+mt+1

2 rather than mt or mt+1 to avoid a
tilting of the phase portraits. The potential wells appear clearly,
with up to four potential wells for β = 2.5,h = 0.485 in the
regime where a ferromagnetic phase coexists with a metastable
paramagnetic phase.

B. Energy conservation

Since Eq. (44) is reminiscent of Newtonian dynamics, we
expect it to follow a discrete form of energy conservation.
Indeed, multiplying both sides by (mt+1 − mt−1)/2, we have

(mt+1 − mt )2 − (mt − mt−1)2

2
= 1

2
(mt+1 − mt−1)k(mt ).

(46)

We now sum between two times t1 and t2:

1

2

([
mt2+1 − mt2

]2 − [mt1 − mt1−1
]2)

=
t2∑
t1

1

2
(mt+1 − mt−1)k(mt ) (47)

= Vt1 − Vt2 , (48)

with

Vt = −
t∑

τ=1

1

2
(mτ+1 − mτ−1)k(mτ ). (49)

Thus, we have

E ≡ 1

2

[
mt2+1 − mt2

]2 + Vt2 = 1

2

[
mt1 − mt1−1

]2 + Vt1 , (50)

which shows conservation of energy in discrete time, V playing
the role of a path-dependent potential. Notice that if the
increments mτ+1 − mτ are small throughout the trajectory (up
to t), then

Vt � −
∫ (mt+mt+1)/2

(m1+m0)/2
k(m)dm

= V ((mt + mt+1)/2) − V ((m1 + m0)/2). (51)

Thus, in the low-speed regime the dynamics are Newtonian-
like with a purely position-dependent potential. Up to a
constant,

V (x) = x(x − f −1(x)) + β−1(F (f −1(x)) − F (x)). (52)
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FIG. 2. Phase portraits of trajectories described by Eq. (35) [(a) and (c)] and maps of the relaxation dynamics mt+1 = f (mt ) together
with the diagonal mt+1 = mt [(b) and (d)] for the parameter settings: (a, b) β = 2.5,h = 0.4 (ferromagnetic phase), (c, d) β = 2.5,h = 0.485
(ferromagnetic phase with metastable state at m = 0).

We plot the position-dependent potential and the path-
dependent potential in Fig. 4. We obtain the trajectory by
solving Eqs. (34) and (35) with mT fixed in a range of values
in [−1,1] using a numerical nonlinear equation solver. The
path-dependent potential for a trajectory up to mt is plotted as
a function of m = (mt + mt+1)/2, following the convention
used in Eq. (51). We see that the position-dependent potential
is a good approximation for the path-dependent potential.

C. Influence of initial conditions

Since the dynamics is second order, two boundary condi-
tions are required to specify a solution. Notice that Eq. (34),
which we can rewrite as

m1 − m0 = f̃0(m0) − m0, (53)

provides an initial condition in the form of an initial velocity
field.

We can therefore compute and plot the initial total energy of
a trajectory as a function of m0 in the continuum approximation
of Eq. (51), and compare it with the position-dependent
potential. We do so in Fig. 5.

If E > Vc, where Vc is the level of the rightmost potential
energy peak, the trajectory is unbounded and will eventually
leave the domain [−1,1], which is forbidden. But because the
time horizon is finite, some trajectories do not have time to
leave the domain in T time steps, and so we see some trajec-
tories with initial energy E > Vc. As T increases, however,
the range of allowed values of E above Vc becomes narrower.
If E < Vc, on the other hand, the trajectory is bounded by
the potential energy peaks. At large T , these trajectories will
oscillate around the minimum of a potential well.

V. RATE FUNCTIONS

A. Dominant trajectories

Once we have obtained solutions to the equations of motion,
Eqs. (34) and (35), we can compute the associated value of
ω. We plot such values in Fig. 6. Due to the existence of
metastable trajectories, for each m there can be several possible
trajectories ending in mT = m and thus several possible values
of I (mT ), as can be seen in Fig. 6(a). The physically relevant
rate function is obtained by taking the minimum value of I (mT )
at any given mT .
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FIG. 3. Phase portraits of trajectories described by Eq. (35) [(a) and (c)] and maps of the relaxation dynamics mt+1 = f (mt ) together
with the diagonal mt+1 = mt [(b) and (d)] for the parameter settings: (a, b) β = 2.5,h = 0.6 (paramagnetic phase) (c, d) β = 1.1,h = 0.1
(ferromagnetic phase near a second-order phase transition).
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FIG. 4. Position-dependent potential (solid line) and path-
dependent potential (circles) with T = 20 for the magnetic regime at
β = 2.5,h = 0.4, and r0 = 0.
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potential peak is fixed at 0.
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FIG. 6. (a) Peretto rate function (dashed) and finite-time rate
function (T = 50, dots) for the ferromagnetic phase at β = 2.5,
h = 0.4, r0 = 0.3. (b) Peretto rate function (solid line) and finite-time
rate function (T = 20, circles) for the paramagnetic phase at β = 1,
h = 0.4, r0 = 0.3.

A natural step is then to characterize the solutions which
give rise to these lowest values. We plot these trajectories in
Fig. 7(a).

The time-dependent magnetization of the Curie-Weiss
model obeys the first-order dynamics mt+1 = f (mt ). We know
from Eq. (41) that the contribution of this dynamics to the ω

function vanish except for initial terms, and we thus expect
the dominant trajectories to follow this dynamics. In practice,
the situation is more complex: as can be seen in Fig. 7(b)
where we plot mt+1 as a function of mt for the ω-minimizing
trajectories, the dominant trajectories seem to follow both
the forward dynamics mt+1 = f (mt ) and backward dynamics
mt+1 = f −1(mt ).

From Fig. 7, we see several cases:
(i) if mT is close to the stable point of the forward dynamics

meq � 0.94, the trajectories initially follow the relaxation
dynamics mt+1 = f (mt ) then veer away from meq using
backward dynamics.

(ii) if mT is sufficiently far away from meq, the trajecto-
ries instead initially follow the backward dynamics mt+1 =

t
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FIG. 7. (a) Dominant trajectories as a function of time for β =
2.5, h = 0.4, r0 = 0.3. (b) dominant trajectories (circles) and limit
curves mt+1 = f (mt ) (solid line) and mt+1 = f −1(mt ) (dashed line)
for β = 2.5, h = 0.4.

f −1(mt ), converging toward m = 0, then veer away from
m = 0 using forward dynamics.

(iii) if mT < −meq, the trajectories initially follow back-
ward dynamics toward m = 0, then away from m = 0 and
toward m = −meq using forward dynamics, then away from
m = −meq using backward dynamics again.

The first type of trajectories start near m0 = r0 = 0.3, while
the second and third start near m0 = 0.2. Both starting points
can be seen from Fig. 5 as the points where the initial energy E0

is approximately equal to the maximum value of the potential
energy peak at m = 0. This remains true for different values
of β and h.

This can be understood from the form of the ω function in
Eq. (41): if a trajectory m satisfies mt+1 = f (mt ), the sum in
Eq. (41) becomes telescoping, leading to ω(m|m0,m) = 0 for
such a trajectory. A similar thing happens if mt+1 = f −1(mt ),
but with a nonzero value of ω(m|m0,m) given by

ωbackward(m0,m)

= F [f −1(m0)] + F (m0) − βm0f
−1(m0)

−{F [f −1(m)] + F (m) − βmf −1(m)}. (54)

022126-7



PIERRE PAGA AND REIMER KÜHN PHYSICAL REVIEW E 96, 022126 (2017)

Thus, the backward and forward dynamics seem to minimize
the cost in terms of ω: partially in the case of backward
dynamics, and fully in the case of forward dynamics. Note
that while ωbackward is not obviously positive and indeed can be
negative for some pairs (m0,mT ), it is positive whenever mT

is reached from m0 via backward dynamics.
The necessity of backward dynamics stems from the

condition that the endpoint of a trajectory be mT , which
in general cannot be satisfied without switching: looking
at the first group of trajectories in Fig. 7(a), trajectories
which follow forward dynamics consistently reach a stable
fixed-point in about 10 time steps. Therefore, trajectories that
switch dynamics at least once are favored.

The location of the switch depends on the length of the time
horizon: the longer the time horizon, the closer the switching
location is to the top of the potential energy peak. This can
be understood by considering a very large time horizon T :
the trajectories must reach mT = m in T time steps, which
means they must either oscillate around a potential energy
minimum (and thus switch dynamics repeatedly, which incurs
a large ω cost) or spend a large amount of time in transit. The
second option is only possible if the trajectory spends a large
amount of time reaching close to a potential energy peak, while
having an initial energy very close to the maximum value of
the potential energy. Thus, the initial energy of the trajectory
must be close to the value of the potential energy peak, and
the switching must happen close to the location of the peak.
Note that in cases where there are several potential energy
peaks of equal height, this means there are two possibilities
for the initial magnetization, as in Fig. 5. We see these two
possibilities clearly in Fig. 7(a).

Incidentally, this explains the large flat section of the
rate function in Fig. 6(a): as we see in Fig. 7(a), the initial
conditions are concentrated around the two values m0 = 0.2
and m0 = 0.3, with the largely flat section (as seen in Fig. 10,
there is a slight decrease at the crossing of m = 0) arising from
those trajectories which start near m = 0.2. These trajectories
start at m0 � 0.2 at a cost ω0(m0), progress to the m = 0 peak
through backward dynamics at a cost ωbackward(m0,0), then
proceed through forward dynamics (which does not incur a
cost in ω) to their endpoint. The only change in the value of ω

occurs for those trajectories which end at mT < −meq, as these
trajectories must switch trajectories once more from forward
to backward at m = −meq.

B. Quasi-Peretto trajectories

In addition to the dominant trajectories, we find there are
a class of trajectories solutions of the equations of motion,
Eqs. (17)–(21) whose associated rate function are very close
to the Peretto rate function even when the dominant trajectories
do not. We call them quasi-Peretto trajectories, and find that
they correspond to the first case in the discussion above. We
plot them below in Fig. 8 for β = 2.5, h = 0.4, r0 = 0.3.

C. Comparisons with simulations

We run Ns = 108 simulations with N = 105 and compare
the results with analytic predictions in Fig. 9. Since we find no
difference between the finite-time rate function and the Peretto

result for β < 1, T = 20, we focus on the ferromagnetic part
of the phase diagram and run simulations for β = 2.5, h =
0.4, where the finite-time rate function and the Peretto result
are highly dissimilar even as late as T = 150. The value of
the rate function is, for a large range of values of mT , of
the order of magnitude of N−1. We therefore include first-
order corrections to the analytically derived rate function as
discussed in Appendix C (note that in order for these first-
order corrections to be exact, we must have N+

N
= 1

2 + o(N−1)

instead of N+
N

= 1
2 + O(N−1/2)). We find excellent agreement.

The associated Peretto rate function is plotted in Fig. 8(a) and is
several orders of magnitude larger than the finite-time result.

D. Connection with Langevin dynamics
and Freidlin-Wentzell theory

The behavior we discuss for dominant trajectories is com-
mon in Freidlin-Wentzell theory with conservative potential,
where it is well-known that the trajectories realizing the
minimum of the action are those that follow both forward and
backward dynamics ([22–24]). Indeed, the above discussion is
a natural adaptation of Freidlin-Wentzell theory in discrete
time (a general discussion of the extension of Freidlin-
Wentzell theory to Markov chains can be found in Ref. [25]):
starting with Eq. (3), we see that the magnetization obtained
at each time step t can be decomposed into the “deterministic”
magnetization that would be obtained in the limit of infinite
system size, m∗

t (mt−1) and a random error term δmt , dependent
on mt−1, which if N is large is Gaussian distributed via the
central limit theorem, with a variance scaling like N .

More precisely, from Eq. (3) the magnetization at time t is
given by

mt = 1

N
2(b+(mt−1) + b−(mt−1)) − 1, (55)

where b± are independent binomial random variables with N
2

trials and success probability

p±(mt−1) = eβ(mt−1±h)

2 cosh (β(mt−1 ± h))
. (56)

In the limit of large N these binomial distribution are
approximately Gaussian, and thus mt has variance σ =
N−1/2σ (mt−1), with

σ 2(mt−1) = 2(p+(mt−1)(1 − p+(mt−1))

+p−(mt−1)(1 − p−(mt−1))). (57)

Thus,

mt � f (mt−1) + N−1/2σ (mt−1)xt , (58)

where xt ∼ N (0,1). We can rewrite this as

mt − mt−1 � f (mt−1) − mt−1 + N−1/2σ (mt−1)xt , (59)

i.e., the dynamics follow a discrete analog of overdamped
Langevin dynamics in an inhomogeneous medium.

VI. ATYPICAL DISORDER

We have so far worked with a configuration of random fields
with a fixed fraction p (which we have taken equal to 1

2 ) of
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FIG. 8. Quasi-Peretto solutions for β = 2.5, h = 0.4, r0 = 0.3 (a) as a function of time. (b) in the (mt,mt+1) plane (circles) along with limit
curves mt+1 = f (mt ) (dashed line) and mt+1 = f −1(mt ) (solid line) for β = 2.5,h = 0.4. (c) Rate function associated with the quasi-Peretto
trajectories (circles) and Peretto rate function (solid line).

spins having random field θ = +1. To model situations where
the magnetization is measured repeatedly from a fixed sample,
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finite-time rate function
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FIG. 9. Finite-time (T = 50) theoretical (solid red line) and
empirical (circles) rate functions for β = 2.5, h = 0.4, r0 = 0.0.

this is appropriate as there is no uncertainty in the sample: faced
with a distribution different from the one predicted, we would
simply have to adjust the value of p.

If we do not have access to repeated measurement on
a fixed sample however, we must take into account the
uncertainty of the random fields configuration. We can account
for situations where the configuration is not known exactly, but
its distribution is known, with the same formalism. Consider
the case where the number of spins with θi = +1 follows a
binomial distribution with parameter p. Then,

P (mT ) ∝
∑

n

(
N

n

)
pn(1 − p)N−n

∫ [T −1∏
t=0

dmt dm̂t

]
dm̂T

× exp

{
−N

T∑
t=0

im̂tmt − Nβ

T∑
t=1

mt−1mt

+
T∑

t=0

[n log(Zt (+1)) + (N − n) log(Zt (−1))]

}
,

(60)
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where P (mT ) is now the probability density function of the
final magnetization mT prior to any measurements on the
sample, i.e., knowing only the distribution of configurations.
Alternatively, it is the probability distribution function of the
final magnetization when the sample is changed at every
measurement.

Performing the sum over n creates an annealed version of
the previous problem, where we must replace 〈log Zt (θ )〉θ by
log 〈Zt (θ )〉θ . This creates an additional coupling between the
variables im̂t and mt which obscures the Newtonian structure
of the problem discussed previously. Instead, we can maintain
the Newtonian structure by performing the same δ-trick as
previously and writing

1 = N

2π

∫
dq dq̂ e−iq̂(Nq−n). (61)

Thus,

P (mT ) ∝
∫ [T −1∏

t=0

dmt dm̂t

]
dm̂T dq dq̂

× exp

{
−N

T∑
t=0

im̂tmt − Nβ

T∑
t=1

mt−1mt

+ N

T∑
t=0

[q log(Zt (+1)) + (1 − q) log(Zt (−1))]

− iNq̂(q − p) + N log[(1 − p)e−iq̂p

+peiq̂(1−p)]

}
. (62)

The reasoning then proceeds as before with two changes:
(1) the functions F and f are replaced with F (·|q) and

f (·|q), where

F (m|q) = q log (2 cosh [β(m + h)])

+ (1 − q) log (2 cosh [β(m − h)]), (63)

f (m|q) = q tanh [β(m + h)] + (1 − q) tanh [β(m − h)],
(64)

(2) the original saddle-point equations (with f and F

replaced by their F (·|q) and f (·|q) equivalents) are sup-
plemented with the saddle-point equations for the q and q̂

variables:

iq̂ = ∂q

T∑
t=0

[q log(Zt (+1)) − (1 − q) log(Zt (−1))]

=
T∑

t=0

[log(Zt (+1)) − log(Zt (−1))], (65)

q = peiq̂

peiq̂ + (1 − p)
. (66)

Equation (66) can be interpreted as giving the best estimate
of the actual configuration of the sample given only a single
measurement of the magnetization with result mT .
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FIG. 10. Rate functions for β = 2.5, h = 0.4, r0 = 0.3, and
T = 50 with atypical disorder (circles) and without (red dotted line).

We expect the presence of atypical disorder to decrease
the value of the rate function away from the equilibrium
magnetization (which does not change), and this is confirmed
by numerical results in Fig. 10.

VII. CONCLUSION

In this article, we have studied the large deviations of the
magnetization at finite times in a simple model with quenched
randomness. The advantage of such simplicity is that a number
of findings—some quite unexpected—could be studied in great
analytic detail. Among the unexpected results, we mention
in particular the emergence of a multiplicity of metastable
trajectories, and of second-order conservative dynamics: we
find that while the dynamics of the RFIM are first order in time,
the dynamics of the relevant trajectories for large deviations
are second-order and follow simple equations of motion
reminiscent of Newton’s second law. In particular, they obey a
form of energy conservation. Moreover, we find that the most
likely trajectories with prescribed final magnetization switch
between two types of first-order dynamics: the relaxation
dynamics of the Curie-Weiss RFIM, mt+1 = f (mt ), and their
time-reversed counterpart mt+1 = f −1(mt ). The order and
time of switching is dependent on the location of temperature
and field strength parameters in the RFIM phase diagram, and
the initial and terminal conditions. We study these equations
numerically, obtain the relevant trajectories and compute
the associated rate functions. We observe that the problem
allows a multiplicity of (meta-)stable solutions, in contrast
to simple relaxation dynamics. We find very good agreement
with simulations. Extension of the formalism to a situation
where the quenched-disorder configuration is uncertain is
straightforward and largely preserves these features.

This mapping of the dynamics of the magnetization to that
of a particle obeying some form of second-order dynamics
in a multi-well potential is well-known in the study of
large deviations of, e.g., first-passage times, as in Freidlin-
Wentzell theory. The switching of dynamics between forward
and backwards has been observed in other systems as well
([22,24,26]). To the best of our knowledge, it has not been
studied in the RFIM before, despite its shedding light on many
surprising and counter-intuitive aspects of large deviations.
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In particular, it would be of interest to see if the switching
phenomena appears in irreversible models such as studied in
Ref. [15], where the time-reversed dynamics mt+1 = f −1(mt )
cannot exist, or in the study of observables which are not local
in time (e.g., average magnetization or average activity).
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APPENDIX A: EQUILIBRIUM RATE FUNCTIONS

1. RFIM Hamiltonian

We can derive the equilibrium distribution assuming a
Hamiltonian,

H(σ ) = −N
m2(σ )

2
− h

∑
i

σiθi, (A1)

as appears in Ref. [19].
The induced distribution on the magnetization m is given

by

P (m) =
〈
δ

(
m − 1

N

∑
i

σi

)〉
(A2)

= 1

Z

∑
{σi }

eβ( 1
2N

(
∑

i σi )2+∑i σi θi )δ

(
m − 1

N

∑
i

σi

)
(A3)

= 1

Z

∑
{σi }

exp

{
β

(
N

m2

2
+
∑

i

σiθi

)}

×
∫

dm̂ e−im̂(Nm−∑i σi) (A4)

= 1

Z

∫
dm̂ exp

{
−Nim̂m + Nβ

m2

2

+N〈log 2 cosh[βθ + im̂]〉θ
}
. (A5)

Taking the saddle-point yields equations for real im̂, which we
write μ, and we obtain

I 0(m) = sup
μ

{μm − 〈log cosh[μ + βθ ]〉θ } − β
m2

2
, (A6)

which would be the rate function, except we are missing the
partition function Z. However, Z is a constant (relative to m),
hence it can be recovered by noticing that the minimum of the
rate function is 0; hence,

I (m) = I 0(m) − min
x

{I 0(x)}. (A7)

2. Equilibrium distribution

The previous approach, however, has the shortcoming of
assuming a Hamiltonian, whereas we are more interested in
obtaining the Hamiltonian from the dynamics. This has been

done by Peretto (1984). We assume parallel dynamics with
one-step transition probabilities given by

W (σ ′|σ ) =
∏

i

exp
{
σ ′

i

[
βhθi + 1

N

∑
j βσj

]}
2 cosh

[
β
(
hθi + 1

N

∑
j σj

)] . (A8)

This transition probability satisfies detailed balance with an
equilibrium distribution p(σ ):

p(σ )

p(σ ′)
= W (σ |σ ′)

W (σ ′|σ )
=
∏

i

exp
{

σi

[
βhθi+ 1

N

∑
j βσ ′

j

]}
2 cosh

[
β

(
hθi+ 1

N

∑
j σ ′

j

)]
exp
{

σ ′
i

[
βhθi+ 1

N

∑
j βσj

]}
2 cosh

[
β

(
hθi+ 1

N

∑
j σj

)] (A9)

=
∏

i

cosh
[
β
(
hθi + 1

N

∑
j σj

)]
exp{σiβhθi}

cosh
[
β
(
hθi + 1

N

∑
j σ ′

j

)]
exp{σ ′

i βhθi}
,

(A10)

giving naturally

p(σ ) = 1

Z
exp

{∑
i

log [cosh (β[hθi + m])] + σiβhθi

}
.

(A11)

We then work out the distribution on m induced by this
distribution on σ in the usual way:

P (m) =
〈
δ

(
m − 1

N

∑
i

σi

)〉
(A12)

= 1

Z

∑
{σi }

exp

{∑
i

log [cosh (β(hθi + m))] + σiβhθi

}

× δ

(
m − 1

N

∑
i

σi

)
(A13)

= 1

Z

∑
{σi }

exp

{∑
i

log [cosh (β(hθi + m))] + σiβhθi

}

×
∫

dm̂

2π/N
e−im̂(Nm−∑i σi) (A14)

= 1

Z

∫
dm̂

N

2π
exp N{−im̂m

+〈log[cosh(β[hθ + m])]〉θ
+〈log[cosh(βhθ + im̂)]〉θ }, (A15)

and we see that the end result is

I (m) = sup
x

{xm − 〈log[cosh(βhθ + x)]〉θ }

− 〈log[cosh(β[hθ + m])]〉θ + 1

N
log[Z], (A16)

and we see again that the log Z constant only serves to ensure
that infm {I (m)} = 0.

APPENDIX B: INVERSES

We make extensive use of the inverses f −1(x) and f −1
0 (x),

and we derive them here.
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The inverse of f0(x) = tanh(ρ + βx) presents no difficulty:

f −1
0 (x) = β−1(tanh−1(x) − ρ). (B1)

The inverse of f (x) = 〈tanh [β(x + hθ )]〉θ is a bit more
complicated:

f (x) = 〈tanh[β(x + hθ )]〉θ (B2)

= 1
2 (tanh[β(x + h)] + tanh[β(x − h)]), (B3)

making use of the addition formula tanh(x + y) =
tanh(x)+tanh(y)

1+tanh(x) tanh(y) ,

f (x) = 1

2

(
tanh[βx] + tanh[βh]

1 + tanh[βx] tanh[βh]

+ tanh[βx] − tanh[βh]

1 − tanh[βx] tanh[βh]

)
, (B4)

we write ty = tanh(βy) for simplicity:

f (x) = 1

2

(
tx + th

1 + tx th
+ tx − th

1 − tx th

)
(B5)

= 1

2

(tx + th)(1 − tx th) + (tx − th)(1 + tx th)

1 − t2
x t2

h

(B6)

= 1

2

(tx + th) − t2
x th − tx t

2
h + tx − th + t2

x th − tx t
2
h

1 − t2
x t2

h

(B7)

= tx
(
1 − t2

h

)
1 − t2

x t2
h

. (B8)

Thus,

t2
x t2

hf (x) + tx
(
1 − t2

h

)− f (x) = 0, (B9)

and

tx = −
(
1 − t2

h

)
2t2

hf (x)
±

√√√√( 1 − t2
h

2t2
hf (x)

)2

+ 1

t2
h

. (B10)

For the choice of branch, we consider βh  1:

tx = − 1

2(βh)2f (x)
±
√(

1

2(βh)2f (x)

)2

+ 1

(βh)2 (B11)

= 1

(βh)2

(
− 1

2f (x)
± 1

2|f (x)|
)

, (B12)

and since the result must be finite, we must have

− 1

2f (x)
± 1

2|f (x)| = 0, (B13)

i.e., we select the + branch if f (x) > 0 and the − branch if
f (x) < 0:

f −1(x) = β−1 tanh−1

(
−
(
1 − t2

h

)
2t2

hx

+ sign(x)

√√√√(1 − t2
h

2t2
hx

)2

+ 1

t2
h

⎞
⎟⎠ (B14)

= β−1sign(x) tanh−1

(
2 cosh (βh)2|x|

1 +
√

1 + (x sinh (2βh))2

)
.

(B15)

APPENDIX C: FIRST-ORDER CORRECTIONS

From the path integral formulation, we can rewrite Eq. (15)
as

P (mT ) ∝
∫ [T −1∏

t=0

dδmt dδm̂t

]
dδm̂T

× exp{−N�(m∗ + δm,m̂∗ + δm̂)}, (C1)

where the starred quantities represent the saddle-point values
and δmT = 0. Expanding to second order, we have

P (mT ) ∝
∫ [T −1∏

t=0

dδmt dδm̂t

]
dδm̂T

× exp{−N�(m∗,m̂∗,m,m̂∗) (C2)

−N

2
(δm δm̂)∂2�(m∗,m̂∗)

(
δm
δm̂

)}
, (C3)

i.e., we have a Gaussian colored noise on top of the Newtonian
path (m∗,m̂∗). This noise scales like N−1/2, hence taking the
N → ∞ limit is equivalent to taking a zero-noise limit of the
noisy (Langevin) dynamics.

This suggests an obvious correction to the numerical
results: the ∂2� matrix has size 2T + 1 (as mT is a parameter
rather than an integration variable); hence, for low values of
T it can be diagonalized easily. The first-order corrections can
be computed once the relevant saddle-point trajectories have
been obtained:

δI (m)

N
= 1

2

2T +1∑
i=1

log |λi |, (C4)

where the λi are the eigenvalues of the ∂2� matrix, which for
a trajectory m is given by if t = 0,

∂2
m0mt ′ � = δt ′,0βf ′(m0) − βδt ′,1, (C5)

∂2
m̂0m̂t ′ � = δt ′,0β

−1f ′
0

(
f −1

0 (m0)
)
, (C6)

∂2
m0m̂t ′ � =iδt ′,0, (C7)

if t � 1,

∂2
mtmt ′ � = δt,t ′βf ′(mt ) − β(δt ′,t+1 + δt ′,t−1), (C8)

∂2
m̂t m̂t ′ � = δt,t ′β

−1f ′(f −1(mt )), (C9)

∂2
mt m̂t ′ � =iδt,t ′ . (C10)

We note that any constant (in m) factors can be obtained
simply by computing the probability distribution P (m) =
exp {−N (I (m) + δI )} and requiring normalization.
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