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Abstract

We investigate the credit risk model defined in Hatchett and Kithn [I8] un-
der more general assumptions, in particular using a general degree distribution for
sparse graphs. Expanding upon earlier results, we show that the model is exactly
solvable in the N — oo limit and demonstrate that the exact solution is described
by the message-passing approach outlined in Karrer and Newman [21], general-
ized to include heterogeneous agents and couplings. We provide comparisons with
simulations in the case of a scale-free graph.

1 Introduction

Modern economies form complex, heavily interconnected ecosystems perhaps best
epitomized by the extraordinary intricacies of supply chains, routinely involving
hundreds of suppliers in dozens of countries. But as highlighted by Haldane and
May [17], complexity is associated with greater systemic instability, and the crisis of
2007-2009 made it clear that proper analysis of systemic risk is needed. Accordingly,
financial contagion and credit-risk modelling is a long-standing research subject [26]
that has recently attracted renewed interest [16, [14] 20} 8] 25].

Credit events cluster in times of economic stress, resulting in large aggregate
loss that are not captured by the risk rating (e.g. S&P) of individual institutions.
As a result, attempts at regulatory controls in the spirit of the Basel II capital
requirements should take into account the possibility of mutually dependent de-
faults in order to adequately model risk of large portfolios. Historical approaches
in financial risk analysis include replacing the number of firms in a portfolio by a re-
duced effective number, or to condition the default probability on macro-economic
indicators [22] [12]. Multi-factor Merton models correlate defaults by assuming that
asset returns of different firms undergo correlated random walks [26] [I5]. But while
these models do take into account correlations, they are not causal and can thus
fail to capture systemic fragility, i.e. the effect of the collapse of a single entity or
group of entities on the entire network.

The physical perspective spurred by the development of econophysics is some-
what different, focusing more on system-wide risk through interactions between

*pierre.paga kcl.ac.uk
"Reimer.kuehn kel.ac.uk



agents than on individual risks [I3, [6]. In particular, there has been in the past
decade an intensive research effort on the network structure of social and economic
interactions, e.g. the structure of sexual contacts, of academic citations or of the
internet [23], 31l [Il [I1], showing that the number of neighbors or partners of an
individual (or node) in most social networks follows a power-law distribution. This
is sometimes explained as the result of a preferential attachment in the network
formation process, as in the Barabasi-Albert model [4].

In this context, systemic risk is associated with contagious processes on the
graph defined by economic interactions: given such processes, one is interested in
the fraction of the network likely to be affected over a certain time horizon. Such
an approach has been used for example by Gai and Kapadia [106, [7], modelling the
banking network as a directed weighted network of exposures in which banks fail if
they are overexposed to failed banks. Caccioli et al. [§] use a representation of the
banking system is a bipartite network of assets and banks, while Hatchett and Kiithn
[18] investigate contatgion in networks of firms via general economic interactions
which include but are not necessarily restricted to financial exposures. Contagion on
networks, while a relatively heterogeneous set of phenomena, has nevertheless been
largely successfully analyzed using tools from statistical mechanics and computer
science such as message-passing [27, 28]. In the context of infection dynamics
for example, Altarelli et al. [2] evaluate the efficiency of targeted immunization
strategies; Moore and Newman [30] derive analytic solution for the susceptibility
of a network to SIR-type epidemics.

We focus in this paper on the model developed in Hatchett and Kiihn [I8], which
investigates how networks of economic interactions affect the system-wide default
likelihood across economic cycles. That investigation provided an analytic solution
of the model in the limit of “dilute yet large” connectivity, i.e. for networks where
the typical number ¢ of neighbors is large (¢ — 00), but small compared to the size
of the system (5 — 0). Moreover, the analysis was limited to Erdés-Rényi random
graphs rather than more realistic degree distribution.

The model has several attractive features: contagion dynamics is not exclusively
driven by an initial shock. It reveals that systemic risk, while clearly dependent on
system-wide distributions of exposures or connectivities, will be relatively insensi-
tive to individual dependencies. The model provides a clear mechanism for default
clustering, and (as we shall show in what follows) it is analytically tractable for a
larger class of specifications than originally considered in [I8]. Moreover it allows
to recover other models such as the Centola-Macy [9] or Watts [32] models by tak-
ing adequate limits, making it a valuable toy model. Many of its parameters can
also be inferred in principle by suitable rating procedures. Unlike other approaches
however it does not look into the 'micro-structure’ of contagion as generated e.g.
by overlapping portfolios which are the main focus of Caccioli et al. [8], or by simi-
larities in trading strategies. We believe, however, that it can be straightforwardly
generalized to include such effects at least on a qualitative level.

The remainder of the paper is organized as follows: in section 2, we define our
model and set up the formalism to analyse its dynamics. In section 3, we provide
an analytic solution in the case where the underlying network is a tree. In the
appendix we use a generating function analysis to demonstrate that this solution
is the correct infinite-network limit for a configuration model random graph. In
section 4, we provide numerical results, and summarize our findings in section 5.



2 Model definitions

Our model consists of weighted graph G = (V, E) with edge weights (w;j, wj;) drawn
according to some distribution p,, ({w;;}). To each nodes we associate a threshold
6; and a binary variable n; ; € {0, 1} signifying whether the node is active (n;; = 0)
or defaulted (n;; = 1).

In the context of modelling credit contagion, the threshold ; corresponds to the
wealth-position of node 7 at the start of a risk-horizon, while a weight w;; describes
the impact of a default of node j on the wealth position of i [I§]. The n;; evolve
according to the dynamical rule

Nig+1 = Ni¢ + (1 —n; )0 Z aijwiinj e — Nit — 0; (1)
J

where the noise variable 7; ; has the form

Nit = &o,t + &t - (2)

The &p; are random variables corresponding to the correlation of the noise across the
entire economy and thus represent global economic conditions, while the {& .} ica
are i.i.d. random variables (whose distribution may vary with time) corresponding
to idiosyncratic noise. This decomposition of the noise corresponds to the minimal
recommendations of the Basel II Accords [5]. A = {a;;} is the adjacency matrix of
the graph.

Written in this way the dynamics have n; = 1 as an absorbing state: if n; 4, = 1
then for all t > ¢y we have n;; = 1. Our aim in this paper is to compute the fraction
of defaulted nodes at a finite time horizon T', i.e to compute

1
m(T) = Z ni.T (3)
(]
which, as in previous work [I8], we will call the defaulted fraction.

Give the way the model is set up, the trajectories {n;.} follow a Markovian
dynamics: their joint probability factorizes as

P ({ni,t}tzo,...;p; iec) = P({ni,ﬁ})HP({ni»t}ieG | {”i,tfl}iec;) :

t=1

As the &+ are independent, the transition probabilities P ({n;+} | {n;+—1}) factorize
over the sites as

P ({nis}[{niz-1}) = Hp(ni,t|ni,t—1, {nji-1}ica,)

)

in which 07 denotes the set of neighbors of node i. As long as a node i is active at
time ¢ — 1, its transition probability p(n;:|ni¢t—1 = 0,{n;i—1}. 5 ) depends on its

local field
hig1 =D GiWigngi1 = > Wijnji 1
J jeoi

and on the threshold 6;, i.e., it will be of the form

JEO;

p(nig = 1ni—1 = 0,{nji-1},c9;) = Wi—1 (hiz—1 — ;)
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where W;_1 is a function whose exact form depends on the distribution of the
noise n;;—1 at time ¢ — 1. Conversely, for nodes that are defaulted at time ¢t — 1,
the single-site transition probabilities are independent of their local fields and are
simply given by

p(nignie—1 = 1,{nji-1}co:) = Onist
reflecting the irreversible nature of the dynamics in the sense described above (with
n;t = 1 as absorbing state).

Writing n; = (n4,0,ni,1,- - ,ni7), we find it advantageous to parametrize the
paths n; by a single default time ¢; defined as the time for which n;;<;, = 0 and
nit;, = 1. Moreover we will assume {nivO}ieG = 0 in the remainder of this article,
and omit the dependence on initial conditions (which simply forbid the default time
t; =0).

Under these assumptions, we can write the path probabilities as default-time
probabilities:

P ({nit}) = P(no) P({ti}icq [{nio}ticq) = HP(tz-wi,h,») :

where
ti—2

P(ti]0;, h) = Wi,y (hig,1 — 0;) [] [1 = Wa (his — 6)] (4)
5=0

and where we have introduced the notation h; = {h; s} _ . 7 ;-

Additionally, we must include the special case where a node does not default
within the time horizon T, corresponding to the paths n;; = 0 for all ¢t < T'. The
probability of such a “survival” path of node ¢ is given by

T-1
P(Survival|6;, h;) = H [1— W (his—0;)] . (5)
s=0

In any sum over default times, the survival path will be implicitly included (it can
be straightforwardly mapped onto a default time ¢ = 7'+ 1 by setting Wp = 1).
In the Gaussian case which will be our reference, we will take

Wi(z) = @ (x —&or) - (6)

We can remark at this point that the W; need not be a c.d.f and can be arbitrary
transition probabilities, e.g. they need not be monotone with respect to the local
field. It is also possible to have the transition probabilities depend on the node’s
degree.

Bootstrap percolation is recovered by having P(ng) (or equivalently Wy) be
a suitable seeding probability, taking deterministic couplings and wealth w;; =
wp, 0 = Op, taking the zero-noise limit and setting Ow L' — ¢ for a constant ¢
corresponding to the number of defaulted (infected) neighbors needed to propagate
default. For a Watts-type percolation, § = kfy should be considered instead with
k being the node’s degree.

3 Message-passing approach

The following approach is an extension of a method proposed by Newman and
Karrer [2I] and can be proven to be exact in the N — oo limit by generating
function analysis (see appendix A).



We consider a node i of degree k and the set neighboring node {j € di}. In
order to compute node i’s default probability at time ¢, we need the marginal
default probability of every neighboring nodes j at all times 7 < ¢ knowing that
node ¢ only defaults at time ¢. But given the form of the dynamics, the marginal
probabilities of defaulting at a time ¢’ < ¢ do not depend on the specific time of
the default ¢, only on the fact that it be posterior to the default time ¢. Thanks
to this, it is very easy to compute marginals by forward-integration.

Consider a specific instance of a weighted tree G, and a node ¢ on this graph.
We write p;(t;) for the probability for i to default at ¢;. If we now consider the
neighbors of ¢, we can write that

pi(ti) = Y piltil{mi} e 1] pilrilts)
{7 }jeai JEOT
where p;(7;|t;) is the probability that j defaults at 7; conditional on i defaulting
at t;. The factorization of the neighbors’ conditional probabilities is due to the
underlying graph being a tree. In terms of the specification of the previous section,
the conditional probability p;(ti| {7;};c5,) is simply given P (#]6;, h;) defined in .
Likewise, we can write

pi(mlt) = > pi(rilti {Amhieaps) T pilnlm) - (7)
{Tl}lea]‘\,’ ledj\i

But we notice then that once a node has defaulted, the subsequent dynamics of its
neighbors no longer influence it. In particular, the conditional probability p;(7|7;)
depends on 7; only insofar as 7; < 7;. Hence,

VTj > T, pl(Tl‘Tj):p(Tl’Tl)Epl(Tl) . (8)
Likewise, we notice that the conditional probabilities p;(ti] {7;} ;c ;) and p;(7;|ti, {1 }1c5\:)
only depend on the neighbors’ default times insofar as these precede their own, i.e.
pi(til {7j},e,,) = piltil {mj; 73 <ti}) ,
and it is clear that
Z p(mlm) =1- Z p(nlm) =1- Z p(71) -
Ty Zq—j Tl <TJ‘ T <Tj

Using these results we can take a new look at the equation for the conditional
probability p;(7;|t;) and evaluate the r.h.s. of eq. , expressing it in terms of the



pi(m) for 7 < 7;. For all r in the neighborhood of j (i excepted), we have

pi(rilti Amhicops) 1] mi(mlms)

1€dj\i

= > pimlts {nheop e (mlm) [T wlnlmy)

Tr<Tj leoj\{i,r}

+ 3 v (Tl Amhicops) pemlm) [T mimim)

Trsz leég\{z,r}

= Z bj (Tj|tz’a {Tl}leaj\i) pr(7r) H pi(mil75)

Tr<Tj leog\{i,r}

+pj(7—j|tiv{7—l}leaj\i> ooenlm)| I wnlm)

Tr2>Tj leoj\{i,r}
= > vt {nheop)er(m) I minlm)
Tr<Tj leaj\{i,r}

+ pj (Tj|’5ia{ﬂ}zeaj\z‘> 1= o) | I winlm)

Tr<Tj leoj\{i,r}

Hence we can write

pi(milt) = > pi(rilta {nheop) I1 @) T (1= D0 am)| o 9

{Tl}leaj\i ”T1<Tj l|TlZTj T <Tj

whereas for 7; < t; we have

p(m)= Y. piml{nheop) 1T ) I (1= D m(m)| - (10)

{Tl}leé’j\i l|7‘l<7'j llTlZTj T1<7j

Replacing p; (75 {71 },c9;1;) by its more explicit version P(Tj| 0,2 1o wlnl), this
is expressed as

pi(T;) = Z P(Tj‘ej, Z wlnl> H pi(m) H 1-— ZPZ(TI) . (11)

{Tl}lec’?j\i leoj\i l‘Tl<Tj l|7‘lZ’Tj T1<Tj

This single-instance equation can then be averaged over the degree and wealth of the
associated nodes, as well as the coupling strength, to obtain the typical behavior
of the system in the infinite system size limit, N — co. We note here that the
neighbors’ degree distribution is different from that of a node chosen at random:
the probability for a neighbor to have degree k is k@gf). Thus the average of p;(7)
is given by

o) =3 3 0i(7)

T Th=1 ]| <7 lm>7 T'<r

k—1
-y S e IT 1= X o0 <P (7\07szn<ﬂ>>>
A =1 0,{w;}

(12)



where the average over the couplings (- - -) {wi} is done over the marginal coupling
distribution.

The resulting equation is forward-propagating in p, starting from p(1) = (Wo(—6)),.
The marginal default probability at time ¢, meanwhile, is given by

p0) =5 Yo

k
=> o) Y I et IT [1 =D p(7) <P (t‘ G,Zwlnl)>
g =1 0.{w}

T Th <t llm>t T'<t

(13)

The resulting numerical scheme is transparent and can be used to quickly compute
default probabilities on an infinite tree. Assuming the probabilities p up to t — 1
have already been computed, the procedure is:

e draw a degree k according to the neighbor degree distribution, and a wealth
0,
e draw k — 1 interaction weights {wl}l:Lm’k_l,

e draw k — 1 default times according to the previously computed distribution
(p(1)7 e 7p(t - 1)7 1- Zs<t p(S)),

e compute the resulting P (¢|0, h),
e repeat the procedure Nygmpiing times and average the results to give p(t).

The marginal probability p(t) can be computed in parallel by drawing a degree k
according to p(k), and drawing k interactions weights and default times (according
to p). The defaulted fraction m(7') is then given by

m(T) =Y p(t). (14)

Using this method, we can rather easily correlate degree with wealth. It has been re-
marked in several contexts that message-passing works rather well even if the graph
is only locally tree-like, and indeed we see very good agreement with simulations
on finite samples.

4 Numerical results

In the following we present results of the above analysis for a stylized economy
exhibiting mutual financial exposures which constitute a scale-free graph of depen-
dencies.

In principle, three levels of analysis are available:

(i) using population dynamics to study equation ((13))
(ii) simulating (large) single instances to solve equation

(iii) stochastic simulations for a moderately large system sizes to check the validity
of the theoretical analysis

Single-instances cavity equations have been studied in the case of bootstrap perco-
lation by Altarelli et al [3] and in an epidemiolgical context by Lokhov et al [24]
and will thus not be investigated here. Instead, we will focus on comparing the
results of (i) and (ii7).



Unless otherwise specified, we will use a truncated scale-free degree distribution,
p(k) ~ k=7 with v = 3, for k € [kmin, kmaz] With various values of ki, > 1, and
kmaz = 100. The wealth 0 will be a Gaussian r.v. with mean 6y = 2.75 and variance
op = 0.3 as used in [18]. We take W;(x) = ®(x) for all ¢, initially assuming neutral
macro-economic condition (i.e. £y = 0 in @) The couplings are taken to be
Gaussian r.v. with mean wyg = 1 and variance o,, = 0.5. For simulations, we take
for the network size N = 103. The time horizon is taken to be T = 12.

4.1 Initial acceleration

As shown in [I8], we can qualitatively assess the interaction-induced increase in
risk by looking at the discrete second derivative of the defaulted fraction at ¢t = 1,
A1 =ma+mo—2m; = p(2) —p(1). A positive initial acceleration of the fraction of
defaulted firms can be seen as an indicator of destabilization of the economy through
mutual exposures. Indeed, for a non-interacting system the initial acceleration is

quickly found to be
Al =— <W0(—9)W1(—9)> <0.

In order to compare the results across networks with different mean degrees
and with the high mean-degree results of previous works we plot the values of A;
in the space of interaction parameters (wg, oy, ). However, a higher degree means
more liabilities and thus a possibly much higher likelihood of losses. Hence in order
to make the results comparable between different degrees the coupling strength
parameters are rescaled: as in [I8] we take w;; = wo (k)" 4 240w (k)~Y?, with
zij ~ N (0,1). While the values of the A; = 0 boundary depend on the details of
the degree distribution, we find the theoretical predictions for large mean degree
to agree remarkably well with previous results for high-connectivity Erdos-Renyi
random graphs, even in the scale-free, finite connectivity case.

The domain boundaries are plotted in figure[I|in the scale-free case for kp,;n = 1
(i.e. (k) ~1.4), kpin = 2 ((k) ~ 3.1) and kyin = 5 ((k) ~ 8.7), and the Erdos-Reny{
case with infinite connectivity is added for reference.

4.2 Macro-economic sensitivity

The Basel regulatory framework (Basel II and III) requires banks to take into
account cyclical effects and macro-economic factors in their risk estimate, in the
shape of a countercyclical capital buffer. It is thus worthwhile to investigate the
role of cyclical effects on the default probability in our setting, highlighting once
again the destabilizing effect of interactions. Assuming for simplicity that these
cyclical effects to change slowly over the course of a year, we set {o; = & in @
to reflect macro-economic condition, and set &y to be a Gaussian r.v. (positive &
reflecting favorable, negative £ reflecting onfavorable conditions). We can then
study the distribution P(mp) of the defaulted end-of-year fraction myp induced by
the distribution of &y, the shape of the large mp-tail giving an indication as to the
vulnerability of the system to large-scale economic shocks. This is done in figure
The non-interacting case is added for comparison.

4.3 Interaction strength

In figure [3] we plot the time dependent defaulted fraction m; at neutral macro-
economic conditions (§p+ = 0) for different values of the interaction strength wy.
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Figure 1: Acceleration domain boundaries for scale-free graphs with (k) ~ 1.4 (blue),
(k) ~ 3.1 (green) and (k) ~ 8.7 (red), and the Erdos-Renyi graph with infinite connectiv-
ity (black). The external domain (large wy, large o,,) has positive acceleration, marking
a destabilizing effect of interactions.
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Figure 2: Default distribution for & ~ AN (0,0.2): Simulations (blue) compared with
cavity predictions (red) and with the non-interacting network (green).



defaulted fractions for different coupling strengths
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Figure 3: Defaulted fractions for different mean coupling strengths: simulation (circles)
and cavity (solid lines).

We set o, to half the value of wy, and average the simulation results over 250
graphs, with 500 runs on each graph.

As expected, the finite-size effects becomes larger as the interaction strength
increases, which is to be expected: while the cavity method is exact on trees,
the presence of loops strongly affects its performance. And while the graphs used
are locally tree-like, for finite size systems there are still a large number of loops
remaining. Since these loops only affect the dynamics when their constitutive nodes
are defaulted, their effect is felt more strongly when the default rate is higher.

4.4 Extension: spillover

An important extension of the model is the inclusion of spillover effects, as induced
by asset fire-sales. A fire-sale happens when a firm, short on liquidity, sells a large
amount of assets in a short time (in the case of banks, it is a regulatory requirement
to maintain a certain size of its liquid capital buffer). As a result of the sudden
glut, asset prices will fall, diminishing the value of assets held by other firms.

To implement this, we consider for simplicity a single class a of (tradeable)
assets, representing a given (constant) fraction of every firm’s wealth. When a
firm’s wealth falls below a certain fraction f. of its initial wealth it enters a distressed
state and sells asset a to maintain liquidity, resulting in a fall of the asset price.
As a result, the value of the portfolio of every firm holding this asset falls, which
we model by changing the firms’ initial wealth by a factor r(d) = (1 + rods)~!
where d; is the fraction of distressed firms at time ¢ (defaulted firms are considered
distressed as well), and ¢ a parameter that could describe market depth. Thus, a
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firm’s wealth at time ¢ becomes
i = r(di—1) 0; — Zwijcijnj,t —MNit
i

and default is triggered when 0; ; falls below zero, while the firm enters a distressed
state as soon as 0;; < f.0;. This can be seen as implementing a simple version
of the overlapping portfolio approach of Caccioli et al.[8] on top of the credit risk
model, using only one asset class. Plotted below are the mean defaulted fraction in
neutral macro-economic conditions (§y = 0, fig. and the probability distribution
of defaulted fractions for random macro-economic conditions (fig. [4b)), showing that
spillover effects can dramatically increase the probability of large defaults. We take
fe=0.1.

4.5 Network size

To check the convergence of the simulation results towards cavity results valid in the
thermodynamic limit N — oo, we plot the relative error of the defaulted fraction
at T' = 12 compared to the cavity simulation ¢ = %, for different network
sizes. Numerical simulations are done on networks of size N = 200 to N = 5000.
We average over 5000 graphs with 1000 runs on each graph (5000 for network sizes
smaller than 103). The results are plotted in figure Since the variance of the
cavity results are orders of magnitude smaller than that of the simulations, the
error bars represent the RMSE of the simulations relative to the average cavity
result, scaled by the square root of the number of simulation samples.
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(a) Mean defaulted fractions under neutral macro-economic conditions (§y =
0) for a model with spillover 7p = 1 (red) compared to results without
spillover (blue).
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(b) End-of-year default probabilities with spillover ry = 1(red) compared to
results without spillover (blue) for &, ~ N (0,0.2).

Figure 4
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Figure 5: Log-log plot of the relative deviation of finite-size simulations from cavity
predictions for different network sizes.

5 Conclusion

In this paper, we have studied the model of credit contagion introduced in [18], and
have derived an analytic solution for the damage-spreading dynamics on generic lo-
cally tree-like sparse graphs, using both an extension of the Newman-Karrer method
detailed in [21], and a generating functional analysis. Both approaches give rise to
the same dynamical equations.

We have found the analytic predictions to be in good agreement with simulation
results, both for average defaulted fractions and for distributions of end-of-year
defaulted fractions induced by varying macro-economic conditions. Our preliminary
results for a highly schematized szenario support the idea that spillover effects
caused by asset fire-sales constitute a relevant driver of systemic instability, which
appears to be at least as important as direct contagion.

Surprisingly, we find that the destabilizing effect of interactions as measured by
the initial acceleration of default does not depend on the degree distribution in the
large connectivity limit. This is due to a combination of the graph being locally
tree-like, i.e. early defaults in the neighborhood of a node are independent, and
the initial default probability being low. Taken together, this allows us to consider
that only one among a node’s k neighbors defaults in the first time step. In turns,
this yields a contribution to the early default probabilities which only depends on
the mean degree.

Unlike standard cavity equations for equilibrium problems, our solution does
not require iteration until convergence and hence the only limiting numerical factor
is the sampling effort required to achieve a desired precision.

On the analytical side, open questions remain. One question of interest is the
computation of large-deviation functions, for which an annealed computation is
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possible using the current method but where quenched computations run into dif-
ficulties (e.g. we cannot, in the replica computation, factor the bond-disorder av-
erage).

The method exposed here can easily be extended to more general models. In
particular, it is straightforward to add recovery scenarios where economic impacts
incurred through deraults diminish with time. In this case, we can make an easy
parallel to the SIR model. This extension will be dealt with in a separate paper.
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A Appendix

A.1 Generating Functional Analysis

We develop here the generating function analysis of the model described above. The
analysis is very general and can be applied to almost any networks where nodes
are coupled via local fields. The method is well understood and has been used in a
variety of other studies [29] [10, 19], although the version presented here differs in
that instead of introducing a path integral, we can limit ourselves to a finite (low)
number of integration parameters.

The method proceeds as follows: considering a particular degree sequence and
wealth configuration, we introduce a generating function for the evaluation of av-
erages and correlation functions of observables related to contagion dynamics as
described by eq. . Taking advantage of the sparseness of the network, we ex-
press this generating function in terms of an integral with an effective action, and
we compute the integral to order N using a saddle-point approximation.

The initial part is simple: as is standard in field theory, we wish to compute a
generating function for the correlations of observables n; ;

G[v|k.0] = <exp Z¢i,tni,t > (15)

for a given auxiliary field 1), where the (---) denotes an average over the dynamics
(the default times) for a given graph and wealth realization (k, @), while (---)
denotes an average over the graphs compatible with this realization.

Once such a function has been computed, the average value (n;:) can be ob-
tained using

(nig) = 0y, G|k, ]|y,

while correlation functions are given by higher derivatives, such as

(naamya) = Do, OO, -

In our situation, we are primarily interested in the global average
1 .
my = N Z (ni,t> .
(2
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Since we use the generating functional method only as a vehicle to obtain a
macroscopic description of the dynamics, we can in fact drop the source fields ; ;
entirely in what follows.

Carrying out the average over the graphs, i.e. over their adjacency matrix A

and couplings w = {w;;, wj; } (i) the generating function is expressed as

Glk, 0] = Z/deA wik) > ] P (t:l6:, hi)

{t:i} 1

We then use Dirac delta functions and their Fourier representations to ‘extract’ the
depencence of the P (¢;|0;,h;) on the couplings w via the local-fields {h;} to obtain

dh; dh;
Gk, 0] zg/de(A,w|k) /H%:/WP(tiwi,hi)

X exp —ifli . hz’ — Zaijw,-jn(tj) s (16)
J

which, as we shall now see, allows the average over graphs to be performed.

A.2 Graph probabilities

When taking the average over graphs, even for tree-like graphs we have a number
of graph ensembles to choose from. They fall into two broad categories: micro-
canonical ensembles, where adjacency matrices are drawn so as to exactly repro-
duce a given degree sequence (with a prescribed degree distribution), and canonical
models where links are randomly chosen such that degrees follow a given degree
sequence only on average.

In the following derivation, we use a micro-canonical configuration model: we
consider a "typical” (self-averaging) degree sequence k, and we take a uniform
probability on the graphs with this given degree sequence:

P(A,wlk) x pr(wija Wji)0a;;,a5, H 51%72]- aij (17)
(i) '

Tt is easier for our purpose to rewrite it as

P(A,W‘k) X pr(wij7 wji)(saij,aji |:<]I:[>5aij,1 + < - <]Iif>> 5aij,0:| H‘Ski,zj aij

(%) i
where the extra factor is seen to be independent of the choice of A for all adjacency
matries compatible with the chosen degree sequence [29], allowing to absorb it
in the overall normalization. N of the distribution. We then use the Fourier
decomposition of the Kronecker deltas to get

dw; o iwiki <k;> i(witw; <k;>
P(A,wlk) = N/H (H)pw(wijaﬂh'i) [Ne( " J)5aij,1+< ~ N ) dai0) -
)

The average over weighted graphs in eq. factors with respect to the edges, so
the generating function can be expressed as

dh; db; dwi -
NHZ/ 27-‘-T 2w ZZP(th? Z hhHD1]7
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in which the individual edge contributions D;; take the form

Dz’j = Z /dwij dwjz- pw(wij,wﬁ) [<]V>€z(w1+wj)5aij’1 + <1 — <]V>> (5aij70]

a;;=0,1
X exp {aij [iwijﬁi . n(tj) + iwjiflj . n(ti)} }
= / dw;j dwj; puw(wij, wj;)

X {1 + <]]§> [ei(“’i“‘wﬂ') exp i {wijfli -n(t;) + wjih; - n(ti)} — 1} } (18)

We can carry out the integration over the edge weights, and as it turns out the
integral is factorizable even if p(w;j, wj;) is not:

_ <6mijﬁ,n(tj>>wij <emﬁﬁj.n(ti>>wﬂ (19)

It is intuitively clear why this should be the case: since a node once defaulted is
not influenced by the subsequent defaults of its neighbors, the value of these cou-
plings is irrelevant. Thus, if node ¢ defaults first, whether wj; follows the marginal
distribution or the conditional p(wj;|w;j) is both irrelevant and impossible to de-
termine, and we can assume the former.

From the formal point of view, this is due to a rather subtle point: for a
given node ¢ with default time t¢;, while the fields h; and h; have T components
(hio, hijg, -+ hir—1), P (ti|0;,h;) only depends on the first ¢; — 1 components of
h;. Therefore, for the remaining components, the integration over the {h;,} s>t
yield 0(his). In order to avoid cluttering the expressions we do not carry out this

<eiwij ﬁi-n(tj)eiwjiﬁj-n(ti)>
Wij,Wjs

integration explicitly, but note that iL@S =0 for s > t; implies

expi {wijﬁi -n(tj) + w;h; - n(ti)} = expi § wyj Z hi s +wj; Z hjsp
tj<s<t; t;<s<t;
and thus only one among the pair (w;j, wj;) appears in the integral. This “dy-
namical factorization” is a crucial simplification. To simplify our expressions, we
introduce

x(h, ) = (ebn) (20)

A.3 Effective action

Combining averages over all edge-related parts, we obtain

k ~ ~ (0o
105 =] (1 0 Lty )i — q)
(i9) (i9)
Assuming the graph to be sparse, i.e. (k) < N, this can be rewritten in exponential
form

k ) L

[[Dij =exp <N> > [xlhisty)x(hy, e ) — 1]
(i) (i)

=exp (k) x(hy, t;)x(hy, t;)el@tes) — N2<k>

2N “—
17]

(21)
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We shall absorb the % part into the normalization constant A. Writing

P(w,t,h) = Zaw w;)014,0(h — hy)

we can rewrite our previous expression as
[[Dij = exp Z/dhdh’ /dw dw’ x(h, ') x (B, t)e™e™ P(w, t,h)P(u, ', ')
(49) bt/

We see that this form almost factorizes. We then introduce the quantity

~

p(tlt) = / dh dw x(h,t)e™ P(w, t,h)
- 1 ~ A N ,
= / dh dw N Z §(w — w;)de,6(h — hy)x(h,t')e™
1 D w;
:Nzét,tiX(hiat)e ¢ )

and decouple sites by considering the p(t|t') as integration variables, using auxiliary
variables ¢(t|t") to enforce their definition via Fourier representations of §-functions:

- dp(t‘t,) dq(t\t’) . W
1= /27T/N exp < —iq(t|t") | Np(t|t') Z(Stt X hz,t .

We notice that after the introduction of this integral, sites are effectively decoupled.
As a result the generating function reads, to leading order in IV,

dp(t|t") dq(t|¢’
N/H UL xp (VG + G + Gl

with

E:pﬂt #'t) ,

t,t’

Go=—1iY p(tlt)q(tt))

tt’
1
;NE:mZM
(]

where

z Z/dhdh dw *“"kP(t|0“h) exp{ 'LwZXht t\t } (22)

Using the self-averaging properties of the (k, §) configuration, we can replace % > i Zi(ki, 05)
with (Z(k,0)), o while only making an error of order N ~1/2_ The function Gy +
G2 + Gj is the effective action of the problem.
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A.4 Saddle-point

Now, considering the form of the integral, we are led in the N — oo limit to
consider a saddle-point approximation, which will lead us to replace to leading
order the integral by its value at the saddle-point. The saddle-point equations

0

W<G1+G2+G3) —0
and 9

W(G1+G2+G3):O
read

(k) p(t'[t) = iq(t]t) (23)

and
p(t|t') =

f dhdh b [dep (49, h) —the—iW(k‘—l)X(ﬁ, t') exp {ieiw Doy x(h, t’)q(tlt’)}

((1;17:1}1 [ 4P (s|0,h)e —ihhe— Z“”“exp{ ey x(h, s")q (3|3,)}

k.0

We can carry out the integration over w, and using , this gives

p(tt) =

k—1

p(k f dhdh h p(t6,h) e_iﬁ'hx(fl,t/) {Zt’ X(fl,t’)p(t/|t)}

kD, s p(slpmy b {5 w(hpls19)) /),
(24)

5, o)

We can interpret the p(t|t') using the same method as in [29]: the p(t|t’) at the
saddle-point appear as conditional probabilities, i.e. the probability that a node
default at time ¢ given that we know one of its neighbors has defaulted at time #'.
Thus we must have ), p(t|t') = 1, remembering that we are also considering in this
sum the probability that the node has not defaulted within the finite risk horizon,
1,...,T.

Another way of looking at things is that we assume the normalization ), p(t|t') =
1 and will show that such solutions are self-consistent and coincide with conditional
probabilities in the message-passing solutions.

We now remember two things. First, in the integral in the numberator of (24)) all
components h for s > t cancel, as was noted prev10usly and explmted in eq. .
Second, x(h,t') is a function of the scalar product h-n(t) = ZZ . hs. Therefore
in the integral in . this sum is actually h - n(t') = ZS " iLs, and therefore

x(h, ' >t) = x(0,t') = 1.

Consequently p(t|s > t) = p(t|t), e.g. for example p(1|2) = p(1]1). This is
clear from the interpretation of the p(¢|t') given above, since defaults of a neighbor
after one’s own default cannot influence the original node as was noted in previous
sections. We thus write, as previously in section [3| p(t) = p(t|t' > t).

18



Using these observations, we can simplify our equations further. First we notice
that with these conventions, in eq. we have

S x(b,t)pt)y = 1= pt) | + > pt)x(h,t),
t’ t'<t t'<t
since, as was previously noted, all the components }Azs vanish for s > ¢t and x (fl, t )

only depends on the components hy for s > t'.
Second, we notice that the denominator

~ k
3 / (2;3?13 (510, 1) e~iB {Z V(& s'>p<s’|s>}

in is equal to 1.
Indeed, consider the simple situation where 7' = 2: we have three possible
trajectories:

e a node defaults on the first time step (¢t = 1), corresponding to the term
dhdh i
D .y —ih-h — .y
/ e Wo(—0)e Wo(=0)
in the denominator

e a node defaults on the second time step (¢ = 2), to which corresponds the
term

/(?2177('1)}; (1= Wo(—0)) Wa(hy — e~ D {p(l)X(ﬁ’ D= p(l))}k

e a node does not default during the time horizon, to which corresponds the
term

/ C}ﬁ)}; (1= Wo(=0)) (1 = Wil — 6)) & {p(1)x(h, 1) + (1= p(1)}

as in eq.

Summing these terms, we find

dhdh
(2m)2

4 [ Ty (= Wal=0) (L= Wil = 6)) B { (DB 1) + (1= p(1)}

k

Z(k,6) =Wo(~0) + / (1= Wo(=0)) Wi (k1 — 0)e™ ™™ L p(1)x (B, 1) + (1 p(1)) }

(2m)2
B dhdh ih . k
“Wio(=0) + [ Gz (1= Wa(=0) =™ {p(1)x(h 1) + (1= (1)}
=Wo(=0) + (1 = Wo(-0)) =1
and the reasoning can be extended without major difficulty to 7" > 2.
Finally, the saddle-point equations for the quantities p(¢|t') read
p(tt) =
. k-1
kp(k dhdh ibb -
S [P (o e i) § S ol (i) + 1= Y )
"y ) e
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while

p(t) =
k—1
kp(k) [ dh dh —ih-h " " _ "
<; o | G inme {Z ot )b 1) + (1 tﬁqu(t))} >9

(25)
And the (marginal) default probabilities are given by

p(t) =

k
(28 o {5 (1))
t'<t t'<t 5.0

)

What is the connection between these equations and their message-passing equiv-

alents ? Recall that A L
X(h,t) _ <ezwh-n(t)> ’

Thus upon expanding , we obtain

k—q
=S [ reonc 3 (0) (1-5m0)
- Hx<ﬁ,ti>p<n>>
0

T1y,Tq<ti=1

k—q
(g ren L () (- 5oo)

k

> /Hdwlpw wi)p(rs) zwzhn(n)>
0

Tl ,TqS <t

k—q
kp(k Mk ,
:<Zf<7li>)/dhp AN ;:0 <q> <1§ p(t))

k t'<t

B Hmsteancann= o)

0

s s()
H

X Z / dwzpw wz) P\Ti < (tw sz TZ >>
1y, Tq<t =1 0

which can be seen to be the same as .
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