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We propose a simple model that captures the salient properties of distribution networks, and
study the possible occurrence of black-outs, i.e. sudden failings of large portions of such networks.
The model is defined on a random graph of finite connectivity. The nodes of the graph represent
hubs of the network, while the edges of the graph represent the links of the distribution network.
Both, the nodes and the edges carry dynamical two state variables representing the functioning or
dysfunctional state of the node or link in question. We describe a dynamical process in which the
breakdown of a link or node is triggered when the level of maintenance it receives falls below a
given threshold. This form of dynamics can lead to situations of catastrophic breakdown, if levels
of maintenance are themselves dependent on the functioning of the net, once maintenance levels
locally fall below a critical threshold due to fluctuations. We formulate conditions under which
such systems can be analyzed in terms of thermodynamic equilibrium techniques, and under these
conditions derive a phase diagram characterizing the collective behavior of the system, given its
model parameters. The phase diagram is confirmed qualitatively and quantitatively by simulations
on explicit realizations of the graph, thus confirming the validity of our approach.

PACS numbers: 89.65.-s, 02.50.-r, 05.45.-a, 05.70.Fh

I. INTRODUCTION

In recent years, the study of physical properties of net-
works has received much attention. This is partly a re-
sponse to the fact that modern societies are increasingly
relying on network based technologies, including mobile
and land-line telecommunication, the Internet or, lately,
grid-computing, but also on traditional transport infras-
tructure, such as rail or road networks. Much of the
interest is also fuelled by the realization that complex
systems in biology [1–3], chemistry [4], sociology [5], and
economy [6, 7] can be analyzed using various network re-
lated techniques and paradigms [8, 9]. The issues here
are to understand the workings of a given complex sys-
tem in terms of properties of the underlying network in
terms of which it might be described, and given some fun-
damental understanding has been obtained, perhaps go
further and characterize the way in which the efficiency
of a system would depend on properties of the net.

Network properties of interest include statistical mea-
sures characterizing structural and topological aspects
globally over a network, such as the degree distribution,
clustering coefficients, centrality, percolation thresholds,
and more, as well as more specific information concern-
ing, e.g. the presence or absence of certain motifs in
(local) connectivity patterns.

Connectivity issues aside, both the nodes and the links
in a network may be further characterized by (graded)
quality measures. The capacity of a specific directed
information channel, the current carrying capacity of a
power line, or just a distance between two nodes in a
net would constitute examples of graded link properties,
whereas the computing power of a server, the capacity of

a local water reservoir, the susceptibility of an individual
to infection by a virus (or an opinion, or by the desire to
acquire a new gadget) would be examples of properties
specifically associated with ‘nodes’.

It goes without saying that functionality as well as
efficiency of network based operations will depend in
various degrees on the properties of a given network.
Points of concern then are robustness of efficiency, and
— on a more basic level — of functionality against unex-
pected failures of links or nodes, or the resilience of net-
work based operations against directed attacks [10–13].
Clearly these issues have implications in the realm of bi-
ological evolution; they would have to influence design
decisions in engineering contexts, or political decisions,
.e.g., when setting up supply infrastructure. On a day-
to-day basis, financial institutions are nowadays required

to set aside capital to cover financial losses incurred by
process failures (operational risk); as processes in orga-
nizations would normally be set up in a way to mutually
support each other, collective effects creating the pos-
sibility of extreme events in large process networks are
clearly relevant [14, 15] and need to be properly quan-
tified in order to set aside the right amount of capital.
Erring in either direction would be costly (for different
reasons) and affect competitiveness of the organization
in question.

The present investigation is concerned with issues of re-
silience of network functionality against random failures
or directed attacks in supply infrastructure and distri-
bution networks, such as power grids, various forms in-
formation transfer networks (telephone, Internet), traffic
systems (logistics), or metabolic networks, where these
issues are particularly relevant. Failures of nodes and/or
links can threaten the basic functionality of the the net-
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work and if cascading through the system (or affecting
hubs of central importance), even lead to a global break-
down. Examples are major blackouts in power-grids,
massive gridlock in traffic systems, or death of an or-
ganism.

We shall look at a simplified setting in which the break-
down of a link or node is triggered when the level of
maintenance or support it receives falls below a given
threshold, leaving the case where failures are induced by
loads exceeding critical levels to a future study [16]. The
simplified setting renders our model a generalization of
previously studied models for operational risk [14, 15]
that includes dynamical properties link-variables in the
analysis.

Our paper is organized as follows. In Sec II we in-
troduce our model, describing its coupled link and node-
dynamics and interpreting the parameters of the model
in terms of a-priori and conditional probabilities for link
and node failure. Conditions are identified under which
the system can be analyzed using thermodynamic equi-
librium methods. The statistical mechanics approach to
analyst long term properties of the model under these
these conditions is briefly outlined in Sec III. Results
in terms of a phase diagram characterizing the collective
behavior of the system, given its model parameters are
presented and discussed in Sec IV. The phase diagram is
confirmed qualitatively and quantitatively by simulations
on explicit realizations of the graph, thus confirming the
validity of our approach. Sec V concludes with a sum-
mary and an outlook on future lines of research.

II. THE MODEL

We describe a distribution network as a set of N ver-
tices or nodes that are interconnected by Ne dynamic
edges or links. The nodes are thought of as relay stations
that organize the (re)distribution of ‘goods’ through the
links by which they are connected. With each node i
we associate a dynamical variable vi that can be either
1 or 0, designating whether the node is up and running
(vi = 1) or in a non-operational state (vi = 0). Similarly,
with each pair (ij) of nodes which are connected in the
distribution network in question, we associate a dynamic
two-state link variable `ij that describes whether a link
is operational (`ij = 1), or down (`ij = 0).

The distribution network can be thought of as a dy-
namical structure on a (random) graph. The structure

of the underlying graph is completely determined by the
symmetric connectivity matrix c = {cij : i 6= j = 1, ..N},
with cij = 1 if nodes i and j, are connected, and cij = 0
otherwise. In this paper, we restrict ourselves to the
ensemble of so-called Erdös-Rényi graphs which are de-
termined by the following probability distribution:

P (c) =
∏

i<j

(

(1 −
C

N
)δcij ,0 +

C

N
δcij ,1

)

δcij,cji
, (1)

i.e. every possible link (ij) is present with probability
C
N

. This typically results in a random graph where the
coordination numbers Li of the nodes are Poisson dis-
tributed with parameter C (the average connectivity):

(PC(L) = CL

L! e−C . The total number of links in the

graph is then given by Ne = CN
2 , as each edge connects

exactly 2 nodes. For any finite C (in comparison to N),
the graph is sparse, the nodes have finite connectivity,
and the number of nodes N and the number of edges Ne

are of the same order of magnitude.
A dynamical evolution of the node and link-variables

on the graph can be described and motivated in analogy
with previous operational risk modelling [14] as follows.
Define a node support as

hi =
∑

j( 6=i)

cij`ij(aijvj + bij) + µi (2)

and a link support as

hij = ãijvivj + b̃ij(vi + vj) + dij . (3)

In these expressions, the parameter aij would quantify
the contribution of node j to the support of i, while
bij could describe external support to i that is funnelled
through the link (ij), while µi would describe a baseline
support independent of the dynamical state of the system
itself.

Similarly, ãij would describe a contribution to the
maintenance of link (ij) that originates from a collab-

oration of the nodes connected by it, while b̃ij would
quantify separate contributions from adjacent function-
ing nodes which would exist without collaboration, and
dij would again characterize a baseline support indepen-
dent of the dynamical state of the system itself.

We suggest a probabilistic asynchronous dynamics
which stipulates that vertices and nodes fail, if they re-
ceive less than a critical threshold support. Without loss
of generality the thresholds can be taken to be zero (by
appropriate definition of baseline support levels). Thus,
in formal terms we have

vi(t + ∆t) = Θ
(

hi(t) + ξi(t)
)

(4)

`ij(t + ∆t) = Θ
(

hij(t) + ξij(t)
)

, (5)

where the vertex- and edge noises are taken to be inde-
pendent and white, and either zero mean Gaussians with
variances σ and σ̃ respectively,

〈ξi(t)ξj(t
′)〉 = σ2δi,jδt,t′ , (6)

〈ξij(t)ξkl(t
′)〉 = σ̃2δ(ij),(kl)δt,t′ , (7)

or thermal noises with probability density functions

p(ξi) =
1

2

d

dξi

tanh

(

βξi

2

)

, (8)

p(ξij) =
1

2

d

dξij

tanh

(

β̃ξij

2

)

. (9)
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By integrating over the noises in (4) and (5) one obtains

P (`ij(t + ∆t) = 1) = 〈`ij(t + ∆t)〉 = φ
(

hij(t)/σ̃
)

(10)

P (vi(t + ∆t) = 1) = 〈vi(t + ∆t)〉 = φ
(

hi(t)/σ)
)

,(11)

in the case of Gaussian noises, with φ(x) denoting the
integrated unit-variance normal density, while the corre-
sponding result for the thermal noise model would be

P (`ij(t + ∆t) = 1) = 〈`ij(t + ∆t)〉 = φβ̃

(

hij(t)
)

(12)

P (vi(t + ∆t) = 1) = 〈vi(t + ∆t)〉 = φβ

(

hi(t))
)

, (13)

with

φβ(x) =
1

2

[

1 + tanh

(

βx

2

)]

. (14)

The collective properties of the system do not crucially
depend on which noise-model is chosen as long as the
noise levels are properly matched. We shall in what fol-
lows mostly work with the thermal noise model.

Note that the current formulation of the dynamics is
in terms of resources or the lack of them as responsible
for the functioning or the failure of nodes and links. In
particular, one would sensibly expect the parameters aij

and ãij as well as the bij and b̃ij to be positive within this
interpretation. The case where failure of links or nodes is
triggered by load levels exceeding certain critical values
is left to a separate study [16].

The parameters dij and µi are related to the a priori
probability that the isolated link (ij) or the isolated node
i, respectively, are up. In a similar vein the aij and ãij

as well as the bij and b̃ij can be related to conditional

probability of node or link failure (or survival) for given
configurations of node and link-states, in analogy to op-
erational risk modelling [14, 15].

In the present investigation, we will restrict our at-
tention to a case in which the model parameters satisfy
a number of symmetry relations, which ensure that the
long time behavior of the system can be described by
thermodynamic equilibrium theory. These are

∀ij : aij = ãij , bij = b̃ij (15)

and

∀i<j : aij = aji , bij = bji (16)

as well as aii = 0 and bii = 0 and equality of noises of
the link and node dynamics,

β = β̃ . (17)

These conditions together are sufficient to ensure that
the stochastic dynamics (13), (12) satisfies detailed bal-
ance with respect to the Gibbs-Boltzmann equilibrium
distribution at inverse temperature β that is generated
by the energy function

H = −
∑

(ij)

cij `ij

(

aijvivj + bij(vi + vj) + dij

)

−
∑

i

µivi ;

(18)

see appendix A. This feature allows to study the collec-
tive behavior of the distribution networks by the methods
of equilibrium statistical mechanics, which greatly sim-
plifies the analysis, and will be the main focus of the
remainder of the present paper.

Clearly a full dynamical study is required whenever
any of the symmetry assumptions is violated. However,
it is well known that thermodynamic equilibrium theory
often gives a fair qualitative description, provided the
violations are not too drastic.

III. THEORETICAL ANALYSIS

For the analysis of the model described in the previ-
ous section, we use the replica method for sparsely con-
nected systems [17–20]. In contrast to previous models
studied with this method, we have the new ingredient
that not only the nodes but also the links have dynam-
ical variables, though we shall find that this introduces
only minor complications in the analysis.

The general strategy is to calculate the free energy of
the model, from which all relevant thermodynamic quan-
tities can be derived. The free energy is expected to be
self-averaging, entailing that, in the large system limit
and under very general conditions on the disorder dis-
tribution in the model (i.e. c, aij , bij , dij and µi), the
average of the free energy over all disorder configura-
tions coincides with its typical value: the free energy of
any explicit realization of the problem drawn from this
ensemble will be equal to the average with probability 1.

Given the Hamiltonian (18), the disorder dependent
partition function Z and the (dimensionless) free energy
F are obtained from

Z(c, {a, b, d, µ}) = Tr
{v}

Tr’
{`}

exp(−βH) ,

F(c, {a, b, d, µ}) = − ln(Z(c, {a, b, d, µ})) ,

where Tr’ denotes a trace over those `ij for which cij = 1.
In order to average the free energy over the disorder, we
use the replica trick 〈log(Z)〉D = limn→0 n−1 log 〈Zn〉D,
so that we have to calculate the average of the replicated
partition function 〈Zn〉D:

〈Zn〉D =

〈

Tr
{vα}

Tr’
{`α}

exp



β
∑

α





∑

(ij)

cij`
α
ij

(

aijv
α
i vα

j +

bij(v
α
i +vα

j )+dij

)

+
∑

i

µiv
α
i

))〉

D

(19)

Here
〈

·
〉

D
indicates the average over the disorder. At this

point we do not yet need to specify the disorder distribu-
tion for the {aij , bij , dij , µi}. We start by performing the
average over the connectivity matrix c and the trace over
the link variables {`α}, which can be easily done as the
replicated partition sum factorizes over these variables.
This is a well-known fact which has been extensively used
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in the study of Ising models with annealed bond disorder
[21].

After some relatively standard manipulations, which
involve introducing the order parameter

ρ(ṽ) ≡
1

N

N
∑

i=1

δṽ,ṽi
, ṽ ≡ {vα : α = 1..n} , (20)

and its conjugate ρ̂(ṽ) to enforce the definition, one ar-
rives at the following compact expression for 〈Zn〉D,

〈Zn〉D =

∫

D{ρ(ṽ) ρ̂(ṽ)}e(N(C
2

G1(ρ)−G2(ρ,ρ̂)+G3(ρ̂))) .

(21)
The functionals appearing in (21) are given by

G1 = Tr
ṽ,w̃

ρ(ṽ)ρ(w̃)

〈

∏

α

(1+eβ(a vαwα+b (vα+wα)+d))

〉

a,b,d

−1

G2 = Tr
ṽ

ρ(ṽ)ρ̂(ṽ) (22)

G3 = ln
〈

Tr
ṽ

exp (µ|ṽ| + ρ̂(ṽ))
〉

µ
,

where we have used the shorthand |ṽ| ≡
∑

α vα.
For the analytic continuation n → 0, we need to make

an ansatz about the symmetry between the replicas, and
assume replica symmetry (RS):

ρ(ṽ) =

∫ ∞

0

dπ(x)
x|ṽ|

(1 + x)n
, (23)

ρ̂(ṽ) = λ0

∫ ∞

0

dπ̂(x̂)
x̂|ṽ|

(1 + x̂)n
. (24)

Further introducing

C0 = 1 + eβd , C1 = 1 + eβ(b+d) , (25)

C2 = 1 + eβ(a+2b+d) , {xl}L =

L
∏

l=1

xl , (26)

and following standard reasoning, we arrive at the typical
RS free energy per node

F = −
1

β

(

C

2
G1(π) − CG2(π, π̂) + G3(π̂)

)

, (27)

where

G1 =

∫ ∞

0

{dπ(xl)}2

〈

ln (C0+C1(x1+x2)+C2x1x2)
〉

a,b,d

G2 =

∫ ∞

0

dπ(x)dπ̂(x̂) ln(1 + xx̂) (28)

G3 =
∑

L

PC(L)

∫ ∞

0

{dπ̂(x̂l)}L

〈

ln
(

1 + eβµ {x̂l}L

)

〉

µ
.

It is understood that (27) has to be evaluated in the
saddle-point with respect to π and π̂. This implies that

π and π̂ have to satisfy the self-consistency equations

π(x) =
∑

L

LPC(L)

C

∫ ∞

0

{dπ̂(x̂l)}L−1

〈

δ
(

x−eβµ {x̂l}L−1

)

〉

µ

(29)

π̂(x̂) =

∫ ∞

0

dπ(x)

〈

δ

(

x̂ −
C1 + C2 x

C0 + C1 x

)〉

a,b,d

.

From the free energy, one can obtain physically relevant
quantities, such as the fraction mn of working nodes

mn =
∑

L

PC(L)

∫ ∞

0

{dπ̂(x̂l)}L

eβµ {x̂l}L

1 + eβµ {x̂l}L

, (30)

the fraction m` of working links

m` =

∫ ∞

0

{dπ(xl)}2

M0+M1(x1+x2)+M2x1x2

C0+C1(x1+x2)+C2x1x2
, (31)

in which Mi = Ci − 1, and the internal energy

U = −
C

2

∫ ∞

0

{dπ(xl)}2

〈

E0+E1(x1+x2)+E2x1x2

C0+C1(x1+x2)+C2x1x2

〉

2

−
∑

L

PC(L)

∫ ∞

0

{dπ̂(x̂l}L

〈

µeβµ {x̂}L

(1+eβµ {x̂}L)

〉

µ

, (32)

with E2 = (a+2b+d)eβ(a+2b+d), E1 = (b+d)eβ(b+d), and
E0 = deβd .

One should note that the inverse temperature β
can be absorbed into the parameters {a, b, d, µ} and is
only used to derive some of the physical quantities. In
what follows, we implicitly assume that β = 1.

At this point one should also note that although the
links are dynamical variables, it was not necessary to in-
troduce a separate order parameter to describe the link-
distribution. It turns out that in any such model the
trace over the link variables (irrespective of the type of
variable) can be carried out directly as the partition func-
tion factorizes over the links.

It should be noted that the saddle-point equations (29)
can only be solved numerically using e.g. a population
dynamics algorithm [22]. The analysis of these equations,
and the implications different types of solution have con-
cerning the possible occurrence of sudden global system
failures are presented in the next section.

IV. RESULTS

We solve equations (29) numerically for fixed β = 1
and various connectivities C and distributions of a, b, d
and µ, using a population dynamics algorithm [22].

After extensive numerical experiments we have ob-
tained the full (at least 5-dimensional) phase diagram,
and we find that the parameter space can be qualita-
tively divided into four distinct regions:
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– (O) the Operational state (mn ' 1) is the only stable
solution,

– (N) the Non-operational state (mn ' 0) is the only
stable solution,

– (CO) Coexistence of the stable Operational state with
a meta-stable non-operational state,

– (CN) Coexistence of the stable Non-operational state
with a meta-stable operational state.

-14

-12

-10

-8

-6

-4

-2

 1  2  3  4  5  6  7  8

C= 4
C= 6
C= 8

µ

a

FIG. 1: A section of the phase diagram in the (a, µ)-plane, with
b = d = 0 for three different average connectivities: C = 4 (full
lines), C = 6 (dashed lines), and C = 8 (dotted lines). For each,
the top line is the upper spinodal (marking the boundary between
the (CO) and the (O) region), the middle line is the equilibrium
transition, and the bottom line is the lower spinodal (marking the
boundary between the (CNO) and the (N) region). Note that for
average connectivities C = 6 and 8, the transition and the lower
spinodal are so close that they cannot be distinguished on the scale
of this plot, thus reducing the (CN) region to a very narrow strip.

We have not found any region where more than two lo-
cally stable phases coexist. The boundaries between the
single-solution and multiple-solution regions are spinodal
surfaces (associated with dynamical transitions).

As plots of phase diagrams in more than two dimen-
sions are not easy to interpret quantitatively, we have
restricted ourselves to presenting 2-dimensional plots in
the (a, µ)-plane, for several combinations of the other
parameters, thus indicating the major trends and char-
acteristics of the full phase diagram.

In all plots, the numerical precision is of the order of
the line widths.

With reference to Figs 1 to 4, we refer to the boundary
between the (O) and (CO) region as the upper spinodal,
and the boundary between the(N) and (CN) region as the
lower spinodal. The upper spinodal demarcates the loca-
tions in parameter space where the non-operational (N)
phase ceases to exist as a meta-stable phase, while the
lower spinodal gives the locations where the operational
(O) phase becomes unstable. The boundary between the
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FIG. 2: A section of the phase diagram in the (a, µ)-plane, with
d = 0, C = 4 for three different values of b: b = 3 (full lines), b = 0
(dashed lines), and b = −3 (dotted lines). For each, the top line
is the upper spinodal, the middle line is the transition, and the
bottom line is the lower spinodal.
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FIG. 3: A section of the phase diagram in the (a, µ)-plane, with
b = 0 C = 4 for three different values of d: d = 3 (full lines), d = 0
(dashed lines), and d = −3 (dotted lines). For each, the top line
is the upper spinodal, the middle line is the transition, and the
bottom line is the lower spinodal.

(CO) and (CN) regions, is given by the surface in param-
eter space where the free energies of the two solutions
coincide, i.e. they mark the thermodynamic equilibrium
transition.

The two spinodals and the the thermodynamic tran-
sition may meet (end) in lines (more precisely, lower di-
mensional surfaces) of critical points (analogous to crit-
ical points of liquid-gas systems), so that it is always
possible to go from the (O) to the (N) region continu-
ously, following some path through the phase diagram
that avoids any transitions.

Except when explicitly mentioned, all plots shown have
been made for constant parameters a, b, d and µ. We
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FIG. 4: The fraction of nodes that are 1 (mn), as a function of a

and µ for C = 4, b = d = 0, both starting from the (N) phase and
the (O) phase.

have also solved the model with varying parameters e.g.
aij ∼ N (〈a〉 , σ). The general tendency is that an in-
crease in the variance σ leads to a reduction of the (CO)
and (CN) regions (pulling the spinodals closer to the
transition), while the thermodynamic transition remains
virtually unchanged. This implies that an increase in
the variability of the resources reduces the region where
the working system is locally stable, thus increasing the
likelihood of sudden system failures.

Since both mn and m` depend on the same distribu-
tions π and π̂, either observable can be used to monitor
the dynamical transitions. In general, any discontinuity
in mn corresponds to a discontinuity in the same direc-
tion in m`, although the amplitude of the discontinuity
depends on the the relative strength of the various pa-
rameters. We note that the operational risk model (with-
out dynamical link variables) as presented in [15] can be
recovered by taking the parameter d → ∞.

The (CO) and (CN) regions are of particular interest
with respect to the possible occurrence of sudden global
system failures. Starting from a state where the working
system is globally stable, one may, by gradually increas-
ing the average load or by gradually reducing the avail-
able resources, push the system over the thermodynamic
transition into a region where the operational (O) phase
no longer corresponds to the global minimum of the free
energy, without realizing it, as there are no detectable
signatures of such a (first order) equilibrium transition.

If the system is pushed further in this direction, it will
certainly collapse once the spinodal is reached. How-
ever, as long as the system is still relatively close to the
equilibrium transition point, it may continue operating
for a very long time until a rare unfavorable fluctuation
tips it over the edge, and a global collapse takes place.
Both the system size, and the distance from the spinodal
will determine the likelihood that rare unfavorable fluc-
tuations actually manage to destabilize the system. The

time before the collapse occurs, fluctuates wildly, hence
it is impossible to accurately predict the timing of global
system failures.

In order to confirm the validity of our analytical solu-
tion, we have also performed Monte-Carlo simulations of
the model using a variant where node and link variables
are pooled and random sequentially updated according
to the Metropolis algorithm. In general, our simulation
results for spinodals perfectly coincide with the theoret-
ical predictions to within numerical precision. Therefore
we have not presented separate figures that compare the
two. We do, however include a simulation illustrating
hysteresis as one of the parameters is varied across the
transition region (Fig. 5) as well as a run on a small sys-
tem in Fig. 6, exhibiting the eventual collapse through
bubble-nucleation of a meta-stable (O) phase into the
globally stable (N) phase.

Incidentally, the agreement between the theoretical
(RS) predictions and the corresponding simulation re-
sults, is a strong indication that that there is no replica
symmetry breaking in the studied region of parameter
space. There are two main reasons for this. First, the
interesting and relevant region in parameter space corre-
sponds to predominantly cooperative relations between
node and link variables, so that the degree of frustration
in the system is low. Apart from this, effects of frustra-
tion are further reduced due to the dynamical nature of
the links.
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FIG. 5: Monte-Carlo Simulation of a system of 105 nodes, with
parameters C = 4, 〈µ〉 = −8, 〈b〉 = 0 and 〈d〉 = 0, exhibiting hys-
teresis of mn as a function of 〈a〉 across the transition. Connecting
solid lines are for uniform parameters (σ = 0), dotted lines for
non-uniform parameters with σ = 0.5. The symbols ’×’ indicate
that we started from the (O) solution, while ’+’ from the (N) solu-
tion. Note that the fluctuations of mn over the measuring sweeps
are of the order of the line widths. We used 102 equilibration and
measuring sweeps for each value of 〈a〉.



7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50000  100000  150000  200000

mn

t

FIG. 6: Simulation of a distribution network of 75 nodes, with
constant parameters C = 4, 〈µ〉 = −8, 〈b〉 = 0 and 〈d〉 = 0 and σ =
0. Plotted is mn as a function of time, (measured in Monte Carlo
steps per degree of freedom). Starting from the meta-stable (O)
phase, the system collapses after about 105 sweeps to the globally
stable (N) phase. Note that the large fluctuations of mn are due
to the small system size.

V. CONCLUSION AND OUTLOOK

We have investigated the performance of distribution
networks realized as sets of nodes interacting via dynam-
ical links arranged on a (random) graph. In the present
investigation, we restricted ourselves to so-called Erdös-
Renyi graphs with Poissonian connectivity distributions.
We have formulated the coupled node and link dynamics
in such a way that breakdown of a link or node is caused
when a level of support it receives falls below a given
threshold. We have identified conditions under which
the collective behavior of such systems can be analyzed
using equilibrium statistical mechanics, and we perform
such an analysis using replica and mean-field techniques
for finitely connected random systems.

The model generalizes previous models of operational
risk, in which link-dynamics is included as an essential
new ingredient. Formally the conventional operational
risk situation can be recovered by considering a limit
in which the links are infinitely resilient against failure,
thereby freezing out the dynamics of links.

A phase diagram characterizing the global behavior of
the system and its dependence on the system parameters
has been obtained, which confirms and quantifies intu-
itions one would have about such a system. In the region
of parameter space of interest for an interpretation as dis-
tribution networks the system can be in one of two pos-
sible phases, an operational phase (O) where most nodes
and links are up and running, and a non-operational
phase (N) where most nodes and links are down. In cer-
tain regions of parameter space, both phases can coexist,
these are further divided into subregions where either
the operational phase (CO) or the non-operational phase

(CN) are the absolutely stable ones. These subregions
are separated by a thermodynamic first order equilibrium
transition. Coexistence regions are bounded by spinodal
surfaces which mark locations in parameter space where
the meta-stable phases become unstable (and therefore
cease to exist). We find that spinodals can meet in lower-
dimensional surfaces of critical second-order transitions
(much as in liquid-gas systems).

One observes the following main trends. By increas-
ing average connectivity C, or by increasing the the re-
silience of links against spontaneous failure (parameter-
ized by 〈d〉), or — to a lesser extent — by increasing the
the resilience of nodes against spontaneous failure (pa-
rameterized by 〈µ〉) the coexistence region is moved to
lower values of the parameter 〈a〉 which quantifies the
individual contributions to node support as well as the
cooperative link support. These trends are clearly in line
with intuition one would have about systems of this type,
concerning the beneficial roles of redundancy of resources
or the reliability of nodes and links. There is a concur-
rent increase of the width of the coexistence region in
the 〈a〉–〈µ〉 plane, though throughout most of the coex-
istence region the operational (O) phase appears to be
the absolutely stable phase (the non-operational phase
the meta-stable one).

For systems described by our theory, a characterization
of phases as stable or meta-stable could provide a more
systematic and more general approach to assess the sta-
bility of a system than current versions of so-called ‘well
being analysis’ [23, 24] for power grids. Within a well-
being analysis, states are classified according to whether
they would survive the failure a link or node chosen from
a pre-established contingency list (which would contain
important supply units or transmission lines) without
shedding load (such states are characterized as ‘healthy’),
or only at the cost of shedding load (in which case states
are called ‘marginal’), while the ‘at risk’ states are those
in which load is shed. Thermodynamic stability would
not only check the stability of the system against indi-
vidual failures within a hand-crafted list, but also against
rare unfavorable fluctuations of which include combined
events. If desired, thermodynamic stability could indeed
be supplemented by checking stability against failure of
selected elements, by looking at the collective behavior of
the system (evaluating restricted partition functions and
free energies) with a selected fraction of nodes and/or
links is frozen in the non-operational state.

From the point of view of assessing the risk of failure
of the net, the coexistence regions are clearly the most
important regions in parameter space. In these regions,
an all operational state of the system coexists with a
non-operational state. Parameter changes which drive
the system into the coexistence region would not be de-
tectable in the collective behavior of the system and, as
already noted in [15], the same is true in particular also
for parameter changes that exchange the relative stabil-
ities of the operational (O) and the non-operational (N)
phase. As a consequence, parameter changes that would
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result in making catastrophic breakdown of the system
an event that is eventually bound to occur under normal
operating conditions would go unnoticed.

In the present investigation we have restricted our-
selves to situations in which the system parameters sat-
isfy a set of symmetry relations, allowing us to use
equilibrium methods to analyze collective behavior. We
have checked by simulations that moderate violations of
these symmetry conditions do not substantially alter the
macroscopic properties of the system. This has also been
observed for (somewhat simpler) models of operational
risk [15], in which the violation of detailed balance by ei-
ther changing the noise model or by adopting asymmetric
interactions, has not lead to qualitative changes in the
collective behavior of the system. Nevertheless, proper
dynamics techniques and/or numerical simulations would
be required to study this issue in greater detail for the
present model.

Changing the topology of the net (e.g. introducing
scale-free link distributions) as they are often observed
in real world networks is easily accomplished and we are
currently looking at this case [16].

A more important point concerns the mechanisms trig-
gering failures of nodes or links. In many distribution
networks the dominant mechanism is related to traffic
along certain links or through certain nodes exceeding
critical values which triggers the failure of a given ele-
ment, and rerouting traffic appears as a crucial ingredi-
ent responsible for cascading failures in the system. This
aspect is not covered in the present investigation, but it
is clearly of great importance. An investigation taking
these constraints into account is under way.

APPENDIX A: DETAILED BALANCE

Here, we show that under the conditions stated in (15)-
(17), the dynamics (12)-(14) satisfies detailed balance

with respect to the Gibbs-Boltzmann distribution with
Hamiltonian (18).

We first consider a transition {v, `} → {v, `}′ with vi =
0, v′i = 1 and v′j = vj , `′ij = `ij ∀j 6= i, for which

Prob({v, `}′) = W ({v, `}′|{v, `}) = φβ(hi) , (A1)

where W ({v, `}′|{v, `}) is the transition probability, and
hi = hi({v, `}) is the node support (2) for node i in the
state {v, `}.

For the reverse transition {v, `}′ → {v, `}, we have
that W ({v, `}|{v, `}′) = φβ(−hi) with the node support
hi unchanged, as it is independent of vi. Hence,

W ({v, `}′|{v, `})

W ({v, `}|{v, `}′)
=

φβ(hi)

φβ(−hi)
= eβhi

= e−β(H({v,`}′)−H({v,`})) , (A2)

i.e. the ratio of the equilibrium distributions of the states
{v, `}′ and {v, `}. This establishes detailed balance for
all transitions involving node variables.

Next, we consider a transition {v, `} → {v, `}′ with
`ij = 0, `′ij = 1 and v′i = vi ∀i, `′kl = `kl ∀(kl) 6= (ij).
Using the symmetry conditions (15)-(17), we obtain the
corresponding ratio of transition probabilities,

W ({v, `}′|{v, `})

W ({v, `}|{v, `}′)
=

φβ(hij)

φβ(−hij)
= eβhij

= e−β(H({v,`}′)−H({v,`})) , (A3)

where hij is the link support (3) which is independent of
`ij . This establishes detailed balance for all transitions
involving link variables.
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