
Quantum Mechanics III Michaelmas Term 2009
Lecturer: Dr. Benjamin Doyon

Homework 1 – due 5 November 2009

1. Let Â and B̂ be linear operators on an inner-product vector space over C, and Â†, B̂† the
usual hermitian conjugates. Show that

(ÂB̂)† = B̂†Â†. (1)

2. Consider a vector |ψ〉 =
∫∞
−∞ dxψ(x)|x〉 written here as a decomposition into the basis of

normalised position eigenstates {|x〉, x ∈ R}. The wave function 〈x|ψ〉 = ψ(x) is

ψ(x) =
a

x+ iL
(2)

for some positive length L > 0 and complex a.

(a) Normalise the state (i.e. choose a such that 〈ψ|ψ〉 = 1).

(b) What is the probability that the particle is found in a position between 0 and L?

(c) Write down the state as a decomposition into the basis of normalised momentum
eigenstates {|p〉, p ∈ R} [hint: to do the integral, shift the contour towards ±i∞ as
appropriate, getting residues].

(d) What is the probability that the momentum of the particle is found to be positive?
That it is found negative? What is the average momentum?

3. Consider a 2-dimensional vector space with orthonormal basis {|1〉, |2〉}. Consider a linear
operator Â acting on it as follows:

Â|1〉 = |1〉+ i|2〉

Â|2〉 = −i|1〉+ |2〉 (3)

(a) Is Â an observable?

(b) If yes, find the possible results of a measurement of the associated physical quantity.
What are the probabilities of these measurement results on the state |ψ〉 = |1〉? What
is the normalised state just after the measurement if it is the smallest value that was
observed?

Answers

1. By definition, (|v〉, Â†|w〉) = (Â|v〉, |w〉). Then, (|v〉, (ÂB̂)†|w〉) = (ÂB̂|v〉, |w〉) = (B̂|v〉, Â†|w〉) =
(|v〉, B̂†Â†|w〉), which shows (1).
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2. (a) The condition of normalisation is

1 = 〈ψ|ψ〉

=
∫ ∞

−∞
dxψ(x)ψ(x)

=
∫ ∞

−∞
dx

|a|2

x2 + L2

=
π|a|2

L
. (4)

For the integral, use, for instance, the change of variable x = L tan θ. Hence we must
have |a| =

√
L/π. We may choose a =

√
L/π (i.e. we may set the phase factor to 1).

(b) The probability of finding the particle in a position between 0 and L is given by

p(X ∈ [0, L]) =
∫ L

0
dx |〈x|ψ〉|2

=
∫ L

0
dxψ(x)ψ(x)

=
∫ L

0
dx

L

π(x2 + L2)

=
1
4

(5)

(c) We want to find ψ̃(p) such that |ψ〉 =
∫∞
−∞ ψ̃(p)|p〉. Hence, we have

ψ̃(p) = 〈p|ψ〉

=
∫ ∞

−∞
dx 〈p|x〉〈x|ψ〉

=

√
L

2π2~

∫ ∞

−∞
dx

e−ipx/~

x+ iL

=

√
L

2π2~
×

{
−2πie−pL/~ p > 0
0 p < 0

= −i
√

2L
~
e−pL/~Θ(p) (6)

where Θ(p) is Heaviside’s step function. In order to evaluate the integral, we shifted
the x contour all the way towards the positive imaginary direction for p < 0, and
the negative imaginary direction for p > 0, picking up the residues on the way. The
completely shifted contour itself has zero contribution because our choice of direction
made the exponential factor vanish. Also, we used the wave function of momentum
eigenstates

〈x|p〉 =
1√
2π~

eipx/~ (7)
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and the value of a found in 2(a). We can check that the resulting function ψ̃(p) gives
the correct normalisation:

〈ψ|ψ〉 =
∫ ∞

−∞
dp 〈ψ|p〉〈p|ψ〉

=
∫ ∞

−∞
dp ψ̃(p)ψ̃(p)

=
2L
~

∫ ∞

0
dp e−2pL/~

= 1 (8)

(d) The probability of finding the momentum to be positive is 1, and to be negative is 0,
since 〈p|ψ〉 = 0 for any p < 0. The average momentum is

〈ψ|P̂ |ψ〉 =
∫ ∞

−∞
dp ψ̃(p) p ψ̃(p)

=
2L
~

∫ ∞

0
dp p e−2pL/~

=
~
2L

(9)

Note that we can evaluate the same average momentum using the representation of
P̂ on wave functions:

〈ψ|P̂ |ψ〉 =
∫ ∞

−∞
dxψ(x)

(
−i~ d

dx

)
ψ(x)

=
iL~
π

∫ ∞

−∞
dx

1
(x− iL)(x+ iL)2

(10)

which indeed gives the same result.

3. (a) The most convenient way to do things, in this finite-dimensional case, is to use ma-
trices:

|1〉 ≡

(
1
0

)
, |2〉 ≡

(
0
1

)
(11)

with

Â =

(
1 −i
i 1

)
(12)

(note: the signs are all correct!). Then, the hermitian conjugation † is just the
combination of complex conjugation and transpose. Hence, we see immediately that

Â† = Â (13)

so that this is an observable (completeness follows from hermiticity in the finite-
dimensional case).
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(b) We need to find the eigenvalues of Â:

det

(
1− λ −i
i 1− λ

)
= 0 (14)

so that
(1− λ)2 − 1 = 0 (15)

which gives λ = 0, 2. These are the possible values of a measurement of the physical
quantity A associated to Â. The assocaited probabilities on the state |1〉 are |〈A =
0|1〉|2 and |〈A = 2|1〉|2 where |A = 0〉 and |A = 2〉 are the normalised eigenvectors
associated to eigenvalues 0 and 2. Hence, we need to diagonalise Â:(

1 −i
i 1

)(
v1

v2

)
= λ

(
v1

v2

)
(16)

Consider λ = 0. The first line gives v1 − iv2 = 0, hence

|A = 0〉 =
1√
2

(
i

1

)
(17)

Now consider λ = 2. The first line gives v1 − iv2 = 2v1, hence

|A = 2〉 =
1√
2

(
−i
1

)
(18)

Hence we find

p(A = 0) = |〈A = 0|1〉|2 =
1
2
, p(A = 2) = |〈A = 2|1〉|2 =

1
2

(19)

Note that these probabilities add up to 1 as it should be. If the smallest value was ob-
served, the value A = 0, then the normalised state vector just after the measurement
is |A = 0〉.

4


