Quantum Mechanics III Epiphany Term 2009

Lecturer: Dr. Benjamin Doyon

Homework 3 — due 12 March 2009

1. For the isotropic three-dimensional simple harmonic oscillator (with V(x) = mT“’z\x\z),
construct annihilation and creation operators for each of the x, y and z components and
write down their commutation rules. From them find expressions for H , ﬁQ, Ly and

L., and verify the commutation rules for these operators. In the two separate cases of

energy E = 3hw/2 and energy E = 5hw/2, find the possible values of | (associated to the

eigenvalues of L2 as usual), and express energy and angular momentum eigenstates | Elm)
in terms of states |ng,ny,n.), parametrised by the three harmonic-oscillator quantum

numbers n;, ny, n, associated with the three cartesian directions.

Answer

We just have to take the results of the one-dimenional harmonic oscillator, one for each coor-
dinates, since the three-dimensional Hamiltonian is just a sum of independent one-dimensional
Hamiltonians: )
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for j = 1,2, 3 representing the three directions z,y, z. They satisfy the commutation relations
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[, a] = [al, al] =0, [al, ax] = 6; phw. 2)

Then, the full Hamiltonian is just
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where we introduce the operators n; = dj&} for the components j, counting the energy differ-
ence with respect to the ground state energy of the associated Hamiltonian. For the angular

momentum operator, we use
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and we have
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where we introduce the operators
Gij = Gai} (5)

(in particular, ¢; = 7n;), and used the relations
C12C21 = NNg + hwhg,  C21C12 = NNg + hwng (6)

and similar relations obtained by cyclic permuttations 1,2,3 — 2,3,1 — 3,1,2. In order to

verify the commutation relations, let us use the operators 7, and ¢;;. We have
(A, 7] = 0 (7)
(since the n;’s count an energy differences in different directions), and
[, Cji] = hw(0ij — i) (8)

Clearly, then, [», 7, k] = 0, so that H commutes with all angular momentum operators. For

the other commutation relations, we use the commutation relations
€35, Cr) = hw(Cdjp — Exjir). 9)

We have

(L., Li] = —g (13 — é31 F icge £ iéog)) = +hly (10)
and since we know that L2 can be constructed out of I:i and I:Z, and its commutation relations
follow from those of ﬁi and ﬁz, this is sufficient.

Now, consider the case F = 3hw/2. There, we must have n; = ng = ng = 0, so that the
only state is |000). Since all operators ¢;; and n; annihilate |000), because the le are always
placed on the right, it follows that both L? and L, are zero on |[000). Hence, this is directly an
eigenstate of L2 and L, with [ = 0 and m = 0: |E = 3hw/2, [ = 0, m = 0) = |000).

Finally, consider the case E = 5luw/2. There are three states that have this energy:

1100), [010), |001)

which correspond to the three solutions to the equation n; +ns +n3 = 1. The action of angular
momentum operators on these states can be obtained by realising that ¢;;, on these states,
essentially moves the value of n; to the ith position if n; is nonzero, and puts a factor hw in

front; otherwise it gives O:
¢12/100) = 0,  ¢12]010) = Aw|100), ¢12|/001) =0

and similar equations for ¢o3 and ¢31, etc. In general, ¢;; decreases the number on the jth place,

and increase the number on the ith place. On the other hand, the operators n; act like

71]100) = hw|100), 71]010) = fA1]001) = 0



and similarly for 7o and n3. (These formulas are derived from the action of a; and d;, see
homework 3). Then, we find

L2[100) = 2k%(100),  L2|010) = 2k%(010), L2|001) = 2A2|001)

where only the last term —2hw(n; + N2 + 713) in the parenthesis in the expression of L? actually
contributes. Hence, all these states have | = 1 (since then (I + 1)h% = 2h?). These states then
form a subspace of fixed [ value, and in this subspace, we need to diagonalise L, in order to find
eigenvectors with fixed values of M. It is clear that f)z|001> = 0, so that we already have an
eigenvector with m = 0. That is, we already found that |E = 5hw/2, I =1, m = 0) = |001). For
the other two possible values of m, which are 41 since we have [ = 1, we need to write down
the eigenvalue equation on some arbitrary linear combination of [100) and |010). So, we say, for

m = 1:

L. (A]100) + B|010))

1
= -~ (=~ Ahw|010) + Bhw|100))

1 (A]100) + B|010))

1 (A]100) + B|010))

which gives two equations, when we look at the coefficients of |000) and |010). These two
equations are consistent, and give

iA=B

so that, with proper normalisation, we have

1
|B =5hw/2, 1 =1, m = 1) = —=(|100) +|010)).

Similarly, for m = —1, we have
L. (A]100) + B|010)) = —h(A[100) + B|010))
1
= — (—Ahw|010) + Bfw|100)) = —h(A[100) + B|010))
so that

—iA=0B

and, with proper normalisation, we have

1
[E = 5hw/2, 1 =1, m = =1) = —=(100) - {010)).



