University of Durham EXAMINATION PAPER

description

QUANTUM MECHANICS III

Time allowed:

3 hours

Examination material provided:

None

Instructions:

Credit will be given for the best FOUR answers from Section A and the best THREE answers from Section B.
Questions in Section B carry TWICE as many marks as those in Section A. Use of electronic calculators is forbidden.

SECTION A

1. (a) Calculate the commutator

$$
\left[\left(x^{a}+1\right) \frac{d}{d x}, \frac{d^{2}}{d x^{2}}\right]
$$

Show that when $a=2$ its value is $-2 \frac{d}{d x}-4 x \frac{d^{2}}{d x^{2}}$.
(b) Is the operator $\widehat{A}=\frac{d^{2}}{d x^{2}}$ hermitian in the space of functions $f(x) ;-\pi \leq x \leq \pi$, $f(\pi)=f(-\pi)=0$?
Show that any eigenfunction of \widehat{A} with eigenvalue λ is automatically an eigenfunction of $\widehat{B}=\widehat{A}^{2}$ and find its corresponding eigenvalue.
2. (a) Two hermitian operators \widehat{A} and \widehat{B} satisfy the following commutation relation

$$
[\widehat{A}, \widehat{B}]=2 \widehat{A}
$$

If $|b\rangle$ is an eigenstate of \widehat{B} with eigenvalue b show that $\widehat{A}|b\rangle$ is also its eigenstate. What is its eigenvalue?
(b) Represent \widehat{B} by an operator $\frac{d}{d x}$ acting on suitable wavefunctions $\psi(x)$ and \widehat{A} by $f(x)$. What is the general form of $f(x)$ which is compatible with the commutation relation between \widehat{A} and \widehat{B} ?
3. A quantum mechanical system has two orthonormal energy eigenstates $|a\rangle$ and $|b\rangle$ with energies $E_{a}>0$ and $E_{b}=2 E_{a}$. A self-adjoint operator \widehat{A} acts on these states as

$$
\widehat{A}|a\rangle=|b\rangle, \quad \widehat{A}|b\rangle=|a\rangle .
$$

(a) Determine the eigenstates of \widehat{A} and their corresponding eigenvalues.
(b) At $t=0$ a measurement of \widehat{A} is performed and a value of 1 is found. What (normalised) state is the system in immediately after this measurement?
(c) What is the earliest time when another measurement of \widehat{A} would definitively give again +1 ?
4. Consider a simple quantum mechanical system in which states are represented by three component vectors and operators by 3×3 matrices. State the necessary and sufficient conditions on the complex constants a, b and c so that

$$
\widehat{M}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & a & b \\
0 & b & c
\end{array}\right)
$$

is self-adjoint and so can represent an observable.
What can be possible results of the measurements of M ?
Calculate the expectation value of \widehat{M} when the system is in the state $\left(\begin{array}{l}1 \\ 1 \\ i\end{array}\right)$.
5. (a) State the uncertainty principle for position and momentum in a one dimensional system.
(b) A one dimensional system has its Schrödinger wavefunction given by:

$$
\psi(x)=\left\{\begin{array}{ccc}
A \cos \left\{\frac{\pi x}{2 L}\right\} & , & -L \leq x \leq L \\
0 & , & |x|>L
\end{array}\right.
$$

where A is constant.
Normalise this wavefunction and calculate $\langle\widehat{x}\rangle,\left\langle\widehat{x}^{2}\right\rangle,\langle\widehat{p}\rangle$ and $\left\langle\widehat{p}^{2}\right\rangle$.
Hint: You can use the integral

$$
\frac{1}{2 L} \int_{-L}^{L} d x x^{2} \cos \frac{\pi x}{L}=-\frac{2 L^{2}}{\pi^{2}}
$$

6. In a quantum mechanical system an observable A is represented by an operator \widehat{A} which has two normalised eigenvectors $|1\rangle$ and $|2\rangle$.
Calculate $\langle\psi| \widehat{A}|\psi\rangle$ and $\langle\psi| \widehat{A}^{2}|\psi\rangle$ for a general normalised state $|\psi\rangle$. Which of the two quantities:

$$
(\langle\psi| \widehat{A}|\psi\rangle)^{2}, \quad \text { or } \quad\left(\langle\psi| \widehat{A}^{2}|\psi\rangle\right)
$$

is larger. What is the condition on $|\psi\rangle$ for these two quantities to be equal?

SECTION B

7. A one dimensional system involves a particle of mass m in a potential

$$
V(x)=\left\{\begin{array}{ccc}
V_{1} & , & -L>x \\
0 & , & -L<x<L \\
V_{2} & , & x>L
\end{array}\right.
$$

(a) Show that the allowed bound state energies, E, must satisfy

$$
\tan (2 k L)=\frac{k\left(a_{1}+a_{2}\right)}{k^{2}-a_{1} a_{2}},
$$

where

$$
k=\sqrt{\frac{2 m E}{\hbar^{2}}} \quad \text { and } \quad a_{i}=\sqrt{\frac{2 m\left(V_{i}-E\right)}{\hbar^{2}}} .
$$

(b) Consider the case of $V_{1}=V_{2}=V_{0}$. Describe how the spectrum of this system is related to the spectrum of the system with the potential

$$
V(x)=\left\{\begin{array}{cc}
\infty & , \quad x<0 \\
0 & , \quad 0<x<L \\
V_{0} & , \quad x>L
\end{array}\right.
$$

8. Using $\widehat{L}_{k}=\sum_{m n} \epsilon_{k m n} \widehat{r}_{m} \widehat{p}_{n}$ and $\left[\widehat{r}_{i}, \widehat{p}_{j}\right]=i \hbar \delta_{i j}$ show that

$$
\left[\widehat{r}_{m}, \widehat{L}_{n}\right]=-i \hbar \sum_{p} \epsilon_{n m p} \widehat{p}_{p} .
$$

Consider $\widehat{M}=\widehat{r}_{1}-i \widehat{r}_{2}$ and show that \widehat{M} satisfies

$$
\left[\widehat{L}_{3}, \widehat{M}\right]=-\hbar \widehat{M}, \quad\left[\widehat{L}^{2}, \widehat{M}\right]=2 \hbar^{2} \widehat{M}+2 \hbar \widehat{r}_{3} \widehat{L}_{-}-2 \hbar \widehat{M} \widehat{L}_{3}
$$

where, as usual,

$$
\widehat{L}^{2}=\widehat{L}_{1}^{2}+\widehat{L}_{2}^{2}+\widehat{L}_{3}^{2} \quad \text { and } \quad \widehat{L}_{-}=\widehat{L}_{1}-i \widehat{L}_{2} .
$$

Hence show that, for some number λ

$$
\widehat{M}|l,-l\rangle=\lambda|l+1,-l-1\rangle,
$$

where $|l, m\rangle$ are conventional eigenstates of \widehat{L}^{2} and \widehat{L}_{3} i.e. they satisfy $\widehat{L}_{3}|l, m\rangle=$ $\hbar m|l, m\rangle$ and $\widehat{L}^{2}|l, m\rangle=\hbar^{2} l(l+1)|l, m\rangle$.
9. A particle is moving in the following one-dimensional square-well potential:

$$
V(x)=\left\{\begin{array}{cc}
0 & , \quad|x|<A \\
\infty & , \quad|x|>A
\end{array}\right.
$$

Show that the two lowest energy eigenfunctions of the Hamiltonian are given by

$$
\psi_{1}=\frac{1}{\sqrt{A}} \cos \frac{\pi x}{2 A}, \quad \psi_{2}=\frac{1}{\sqrt{A}} \sin \frac{\pi x}{A}
$$

and determine these energies.
At time $t=0$ the wave function of the moving particle is given by

$$
\Psi(x)=\frac{\psi_{1}(x)+\psi_{2}(x)}{\sqrt{2}} .
$$

What is this wavefunction at time t ?
What is the probability that, at time t, the particle is in the interval $0<x<A$?
10. A particle is moving in a 3 -dimensional space in the potential

$$
V(\boldsymbol{r})=-V_{0} \exp \left(-\frac{r}{\alpha}\right)
$$

Separate the time independent Schrödinger equation in spherical polar coordinates

$$
\psi(r, \theta, \varphi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{m=l} \frac{\chi_{l}(r)}{r} Y_{l m}(\theta, \varphi)
$$

where $Y_{l m}(\theta, \varphi)$ are spherical harmonics and show that $\chi_{l}(r)$ satisfies

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \chi_{l}}{d r^{2}}+\left[\frac{l(l+1) \hbar^{2}}{2 m r^{2}}-V_{0} \exp \left(-\frac{r}{\alpha}\right)\right] \chi_{l}=E \chi_{l}
$$

Consider $l=0$, change variables $r \rightarrow \xi=\exp \left(-\frac{r}{2 \alpha}\right)$ and show that $\chi=\chi_{0}$ satisfies

$$
\frac{d^{2} \chi}{d \xi^{2}}+\frac{1}{\xi} \frac{d \chi}{d \xi}+\left(B-\frac{C}{\xi^{2}}\right) \chi=0
$$

for certain constants B, C. What conditions are to be imposed on χ as a function of ξ and how can these be used to determine energy levels?
Note: $\nabla^{2}=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r}\right)-\frac{\hat{L}^{2}}{r^{2}}$
Note also that Bessel's equation, i.e. the equation

$$
\frac{1}{z} \frac{d}{d z}\left(z \frac{d \chi}{d z}\right)+\left(1-\frac{\nu^{2}}{z^{2}}\right) \chi=0
$$

has a regular solution $J_{\nu}(z)$. Moreover, $J_{\nu}(z)$, as a function of z, possesses many zeros.

