Answers to mock exam, section B
Lie Group and Lie Algebras, 2010.

B4

(i) The Heisenberg group is the subgroup of GL(3,R) formed by the matrices

Ay

I
o O =
S = Q

b
c |:a,b,ceR
1

Its center is the set of matrices in H that commute with everything in H:
Z(H)={A€H:AB=BAV Be€ H}.
The product of two elements of H is given by

1 a+d b +ad+5b
AA =1 0 1 c+c
0 0 1

Hence, requiring AA’ = A’A for all d’, 1/, ¢’ gives us the requirement ac’ = a/c so that a = 0
(e.g. taking a’ = 0 and ¢ = 1) and ¢ = 0 (e.g. taking a = 1 and ¢/ = 0). The center is
then

1 00
Z(H) = 01 0 |:beR
0 01
The product of two central elements A and A’ gives
1 0 b+V
AA =1 0 1 0
00 0
1 00
so that we see that the map ¢ : R — Z(H) : b — 010 is an isomorphism
0 01

(bijective, and preserves products: ¢(b)p(b') = ¢(b+V')). Hence, Z(H) is isomorphic to
R.

In general, the center of a group is a normal subgroup (hence in particular a subgroup).
We could prove this in general, but here let us show it in the particular case of the group
H. Z(H) is a subgroup: it contains the identity (b = 0), every element has an inverse

(b — —b), and the product is closed (obvious by the formula above). It is also a normal



subgroup, since by construction AA’ = A’A for all A € H and for any A’ € Z(H), so that
ATAA = A € Z(H).
1 —a ac—>
Alt=l0 1 —¢
0 0 1
The quotient group Q@ = H/Z(H) is the group of left-cosets, {hZ(H) : h € H}. Using the

multiplication law, taking

1 0 R
ZH)=|01 0 |,
0 0 1
we see that the quotien group is
1 a R
Q= 01 ¢ |:a,ceR
0 0
For A, A’ € Q, the product is
1 d+a R
AA = 0 1 d+c
0 0 1
1 a R
This is clearly abelian, AA’ = A’A. Also, the map ¢ : R? — Q : 01 ¢ |is
0 0 1
an isomorphism (bijective, and preserves products: ¢(a,c)eo( =¢la+d,c+)),s

that @ is isomorphic to R?.

Finally, let us see if we could have a semi-direct product @ x Z(H ) isomorphic to H. Since
we know that @ is isomorphic to R? and that Z(H) is isomorphic to R, we are looking
for an isomorphism between R? x R and H. Consider in general the multiplication law for

such a semidirect product:

((a,0),b)((a', ), V") = ((a+d';c+ ), b+ do,0) (V)

where ¢,y is an element of the automorphism group of R and depends on (a,c). We

know that the multiplication law for H gives
((a,c),b)((d/, ), V)= ((a+ad',c+ ), b+ b +ac)
so that we would require
¢(a,c)(b/) =V +ac.

This is clearly not an automorphism of R depending (a, ¢): it is not an automorphism of R,
and there is a ¢ dependence. Hence, there is no semi-direct product @ x Z(H) isomorphic
to H.



(ii) The Lie algebra of the Heisenberg group is the set of matrices of the form

(iii)

0 a b
X=100 ¢ |:(abec)eR?
00
Explicitly exponentiating gives
0 a b . 0 0 ac 1 a b+ac/2
X=1+100 ¢ |+ =[o1 ¢
0 0O 0 0 O 00 1

On the other hand, the matrices in the Heisenberg group are

1 A B
M=|01 C |:(4,B,C)cR?
0 0 1
Hence, we find that the exponential map is
(a,b,c) — (A,B,C) = (a,b+ ac/2,c).
The inverse map can easily be obtained:

(A,B,C) — (a,b,c) = (A, B — AC/2,C).

This makes it clear that the exponential map is onto (surjective: every (A, B,C) has
a pre-image) and 1-1 (injective: if (A, B,C) # (A',B’,C"), then (A,B — AC/2,C) #
(A,B'— A'C"/2,C") - clear if A # A" or C # (', and if A = A’ and C = C’, it becomes
clear for B’ # B’ as well).

a

For the group SU(2), the three conditions on the matrix A = (
c

b ) ,
J coming from

ATA =1 are |a|> + |c[? = 1, |b]? + |d|?> = 1 and a*b + ¢*d = 0, and the condition saying
that A has unit determinant is ad — bc = 1. Given a and c¢ satisfying the first equation,
we can solve the third for b, giving b = —c¢*d/a*. The unit determinant condition then is

ad + |c|?d/a* = 1 so that d = a*, which implies b = —c*. Hence, we can write

with the condition that |a|? + |¢|?> = 1. Hence, all matrices are characterised by 2 complex
numbers, a and ¢, with one condition, |a|? + |c[> = 1. Each complex number is 2 real
numbers, a = a, + ia; and ¢ = ¢, + ic;, so what we have is a hyper-surface in R* (i.e.
a manifold of dimension 3 in R*). This manifold is a 3-sphere, defined by the equation
a2+al+ct+c?=1.



B5

(i) Following the hint, we first do
eAeB — pAB=ALA _ et Be A A _ A (B) A
Now we have
1
e*A(B) =B+[A, B+ [A[AB]+.. . =B+ud+0+...=B+ud.
Hence,
(AGB _ JBruA A
Next, we define X = B+ uA and Y = A in order to use the BCH formula. We find
[X,Y] =[B+uA,A] = —uA = —uY.
Hence, adX (Y) = —uY and adY (Y) = 0, so that adX and adY both preserve the vector
space CY: they are just multiplication operators. Hence, we can just replace them by the
number that they multiply by, i.e. adX — —u and adY — 0. We get
1
log(e ™) u
log(e“e?) = B +uA dt ———2 = A
og(e”e”) +u —i—/o 1= (eu) T 1= =
(ii) Since [P, H] = 0, we immediately can write
eixPeixHeGB _ eix(P+H) e@B.
Then, we see that [iz(P + H),0B] = —izf(P + H), so in the formula of (i) we can set
A iz(P+ H), B~ 0B and u+— —6. We directly obtain
GiaP giwH OB _ 69(6911 ia(P+H)+B) .
B6
(i) We only have to verify the derivation property on the commutator [D;, D3]. We have

[D1, Dof([zy]) = Di(D2([zy])) — D2(D1([zy]))
= Di([D2(x)y] + [#D2(y)]) — Da([Dr(x)y] + [#D1(y)])
= [D1(D2(2))y] + [D2(x)D1(y)] + [D1(x) D2(y)] + [#D1(D2(y))]
—[D2(D1(z))y] — [D1(2)D2(y)] — [D2(2)D1(y)] — [#D2(D1(y))]
= [D1(D2(2))y] — [D2(D1(2))y] + [£D1(D2(y))] — z[D2(D1(y))]
= [[D1, Do](2)y] + [z[D1, D2](y)]

+
+

hence [Dy, Ds] is a derivation.



(i)

(iii)

In order for the kernel to be a subalgebra, it needs to be a subspace, and the Lie bracket
needs to be closed in it. The kernel is certainly a subspace, because if € ker(D) and
y € ker(D), then D(ax + by) = aD(z) + bD(y) = 0 so that ax + by € ker(D). Then,
we need to check that for x and y as previously, we have [zy] € ker(D). We calculate
D([zy]) = [D(z)y]+[xD(y)] = 0+0 hence indeed this holds. So, the kernel is a subalgebra.
In order for it to be an ideal, we would need additionally that D([zy]) = 0 for x € ker(D)
and for all y € L. But we have D([zy]) = [D(x)y] + [zD(y)] = [¢D(y)] # 0, hence
[xy] & ker(D), so no, the kernel is not an ideal.

The Killing form is k(z,y) = Tr(ad zady). Consider x(x, D(y)). Since D is a derivation,
it satisfies D([zy]) = [D(x)y] + [D(y)]. Note that

ad (D(y))(2) = [D(y)z] = D([yz]) — [yD(2)] = D(ady(z)) — ady(D(2)) = [D,ad y|(2)-

As operators on L, this equation means ad (D(y)) = [D,ady]. Hence, k(z,D(y)) =
Tr(ad z [D,ad y]) = Tr([ad z, D] ad y) using cyclicity of the trace. But then,

ladz, D] = —[D,ad 2] = —ad (D(x))

hence we find k(z,D(y)) = —k(D(x),y). Using symmetry of the Killing form, this is
k(z, D(y)) = —k(y, D(x)), which is anti-symmmetry of a(z,y) = x(x, D(y)).



