
Answers to mock exam, section B

Lie Group and Lie Algebras, 2010.

B4

(i) The Heisenberg group is the subgroup of GL(3, R) formed by the matrices

H =


 1 a b

0 1 c

0 0 1

 : a, b, c ∈ R

 .

Its center is the set of matrices in H that commute with everything in H:

Z(H) = {A ∈ H : AB = BA ∀ B ∈ H}.

The product of two elements of H is given by

AA′ =

 1 a + a′ b′ + ac′ + b

0 1 c + c′

0 0 1

 .

Hence, requiring AA′ = A′A for all a′, b′, c′ gives us the requirement ac′ = a′c so that a = 0
(e.g. taking a′ = 0 and c′ = 1) and c = 0 (e.g. taking a = 1 and c′ = 0). The center is
then

Z(H) =


 1 0 b

0 1 0
0 0 1

 : b ∈ R

 .

The product of two central elements A and A′ gives

AA′ =

 1 0 b + b′

0 1 0
0 0 0



so that we see that the map φ : R → Z(H) : b 7→

 1 0 b

0 1 0
0 0 1

 is an isomorphism

(bijective, and preserves products: φ(b)φ(b′) = φ(b + b′)). Hence, Z(H) is isomorphic to
R.

In general, the center of a group is a normal subgroup (hence in particular a subgroup).
We could prove this in general, but here let us show it in the particular case of the group
H. Z(H) is a subgroup: it contains the identity (b = 0), every element has an inverse
(b 7→ −b), and the product is closed (obvious by the formula above). It is also a normal
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subgroup, since by construction AA′ = A′A for all A ∈ H and for any A′ ∈ Z(H), so that
A−1A′A = A′ ∈ Z(H).

A−1 =

 1 −a ac− b

0 1 −c

0 0 1

 .

The quotient group Q = H/Z(H) is the group of left-cosets, {hZ(H) : h ∈ H}. Using the
multiplication law, taking

Z(H) =

 1 0 R
0 1 0
0 0 1

 ,

we see that the quotien group is

Q =


 1 a R

0 1 c

0 0 1

 : a, c ∈ R

 .

For A,A′ ∈ Q, the product is

AA′ =

 1 a′ + a R
0 1 c′ + c

0 0 1

 .

This is clearly abelian, AA′ = A′A. Also, the map φ : R2 → Q : (a, c) 7→

 1 a R
0 1 c

0 0 1

 is

an isomorphism (bijective, and preserves products: φ(a, c)φ(a′, c′) = φ(a + a′, c + c′)), so
that Q is isomorphic to R2.

Finally, let us see if we could have a semi-direct product QnZ(H) isomorphic to H. Since
we know that Q is isomorphic to R2 and that Z(H) is isomorphic to R, we are looking
for an isomorphism between R2 n R and H. Consider in general the multiplication law for
such a semidirect product:

((a, c), b)((a′, c′), b′) = ((a + a′, c + c′), b + φ(a,c)(b
′))

where φ(a,c) is an element of the automorphism group of R and depends on (a, c). We
know that the multiplication law for H gives

((a, c), b)((a′, c′), b′) = ((a + a′, c + c′), b + b′ + ac′)

so that we would require
φ(a,c)(b

′) = b′ + ac′.

This is clearly not an automorphism of R depending (a, c): it is not an automorphism of R,
and there is a c′ dependence. Hence, there is no semi-direct product QnZ(H) isomorphic
to H.
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(ii) The Lie algebra of the Heisenberg group is the set of matrices of the formX =

 0 a b

0 0 c

0 0 0

 : (a, b, c) ∈ R3

 .

Explicitly exponentiating gives

eX = 1 +

 0 a b

0 0 c

0 0 0

+
1
2

 0 0 ac

0 0 0
0 0 0

 =

 1 a b + ac/2
0 1 c

0 0 1

 .

On the other hand, the matrices in the Heisenberg group areM =

 1 A B

0 1 C

0 0 1

 : (A,B, C) ∈ R3

 .

Hence, we find that the exponential map is

(a, b, c) 7→ (A,B, C) = (a, b + ac/2, c).

The inverse map can easily be obtained:

(A,B, C) 7→ (a, b, c) = (A,B −AC/2, C).

This makes it clear that the exponential map is onto (surjective: every (A,B, C) has
a pre-image) and 1-1 (injective: if (A,B, C) 6= (A′, B′, C ′), then (A,B − AC/2, C) 6=
(A′, B′ − A′C ′/2, C ′) - clear if A 6= A′ or C 6= C ′, and if A = A′ and C = C ′, it becomes
clear for B′ 6= B′ as well).

(iii) For the group SU(2), the three conditions on the matrix A =

(
a b

c d

)
coming from

A†A = 1 are |a|2 + |c|2 = 1, |b|2 + |d|2 = 1 and a∗b + c∗d = 0, and the condition saying
that A has unit determinant is ad − bc = 1. Given a and c satisfying the first equation,
we can solve the third for b, giving b = −c∗d/a∗. The unit determinant condition then is
ad + |c|2d/a∗ = 1 so that d = a∗, which implies b = −c∗. Hence, we can write

A =

(
a −c∗

c a∗

)

with the condition that |a|2 + |c|2 = 1. Hence, all matrices are characterised by 2 complex
numbers, a and c, with one condition, |a|2 + |c|2 = 1. Each complex number is 2 real
numbers, a = ar + iai and c = cr + ici, so what we have is a hyper-surface in R4 (i.e.
a manifold of dimension 3 in R4). This manifold is a 3-sphere, defined by the equation
a2

r + a2
i + c2

r + c2
i = 1.
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B5

(i) Following the hint, we first do

eAeB = eAeBe−AeA = eeABe−A
eA = eeadA(B)eA.

Now we have

eadA(B) = B + [A,B] +
1
2
[A, [A,B]] + . . . = B + uA + 0 + . . . = B + uA.

Hence,
eAeB = eB+uAeA.

Next, we define X = B + uA and Y = A in order to use the BCH formula. We find

[X, Y ] = [B + uA, A] = −uA = −uY.

Hence, adX(Y ) = −uY and adY (Y ) = 0, so that adX and adY both preserve the vector
space CY : they are just multiplication operators. Hence, we can just replace them by the
number that they multiply by, i.e. adX 7→ −u and adY 7→ 0. We get

log(eAeB) = B + uA +
∫ 1

0
dt

log(e−u)
1− (e−u)−1

A = B + uA +
−u

1− eu
A = B +

u

1− e−u
A

(ii) Since [P,H] = 0, we immediately can write

eixP eixHeθB = eix(P+H)eθB.

Then, we see that [ix(P + H), θB] = −ixθ(P + H), so in the formula of (i) we can set
A 7→ ix(P + H), B 7→ θB and u 7→ −θ. We directly obtain

eixP eixHeθB = e
θ

“
1

eθ−1
ix(P+H)+B

”
.

B6

(i) We only have to verify the derivation property on the commutator [D1, D2]. We have

[D1, D2]([xy]) = D1(D2([xy]))−D2(D1([xy]))

= D1([D2(x)y] + [xD2(y)])−D2([D1(x)y] + [xD1(y)])

= [D1(D2(x))y] + [D2(x)D1(y)] + [D1(x)D2(y)] + [xD1(D2(y))]

−[D2(D1(x))y]− [D1(x)D2(y)]− [D2(x)D1(y)]− [xD2(D1(y))]

= [D1(D2(x))y]− [D2(D1(x))y] + [xD1(D2(y))]− x[D2(D1(y))]

= [[D1, D2](x)y] + [x[D1, D2](y)]

hence [D1, D2] is a derivation.
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(ii) In order for the kernel to be a subalgebra, it needs to be a subspace, and the Lie bracket
needs to be closed in it. The kernel is certainly a subspace, because if x ∈ ker(D) and
y ∈ ker(D), then D(ax + by) = aD(x) + bD(y) = 0 so that ax + by ∈ ker(D). Then,
we need to check that for x and y as previously, we have [xy] ∈ ker(D). We calculate
D([xy]) = [D(x)y]+[xD(y)] = 0+0 hence indeed this holds. So, the kernel is a subalgebra.
In order for it to be an ideal, we would need additionally that D([xy]) = 0 for x ∈ ker(D)
and for all y ∈ L. But we have D([xy]) = [D(x)y] + [xD(y)] = [xD(y)] 6= 0, hence
[xy] 6∈ ker(D), so no, the kernel is not an ideal.

(iii) The Killing form is κ(x, y) = Tr(adxad y). Consider κ(x,D(y)). Since D is a derivation,
it satisfies D([xy]) = [D(x)y] + [xD(y)]. Note that

ad (D(y))(z) = [D(y)z] = D([yz])− [yD(z)] = D(ad y(z))− ad y(D(z)) = [D, ad y](z).

As operators on L, this equation means ad (D(y)) = [D, ad y]. Hence, κ(x,D(y)) =
Tr(ad x [D, ad y]) = Tr([adx,D] ad y) using cyclicity of the trace. But then,

[adx,D] = −[D, adx] = −ad (D(x))

hence we find κ(x,D(y)) = −κ(D(x), y). Using symmetry of the Killing form, this is
κ(x,D(y)) = −κ(y, D(x)), which is anti-symmmetry of α(x, y) = κ(x,D(y)).
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