King's College London

University Of London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

```
ATTACH THIS PAPER TO YOUR SCRIPT USING THE STRING PROVIDED
Candidate No: .................................... Desk No:
```

MSc Examination

7CCMMS01 (CMMS01) Lie groups and Lie algebras (mock EXAM)

Summer 2010

Time Allowed: Two Hours

This paper consists of two sections, Section A and Section B. Section A contributes half the total marks for the paper.

Answer all questions in Section A.
All questions in Section B carry equal marks, but if more than two are attempted, then only the best two will count.

NO calculators are permitted.

TURN OVER WHEN INSTRUCTED

A 1. 20 points

(i) Define: a) Lie algebra, b) group, c) Lie algebra homomorphism, d) group homomorphism, e) subgroup, and f) normal subgroup.
(ii) Let G and H be groups. Show that the kernel of a homomorphism ϕ : $G \rightarrow H$ is a normal subgroup of G (you can use without proof the main properties of homomorphisms).
(iii) State the definition of the property "semisimple" of a Lie algebra in terms of solvable ideals. Show that if \mathfrak{g} is semisimple, then it does not have abelian ideals other than $\{0\}$.
(iv) Consider a vector space V spanned over \mathbb{R} by three independent elements x, y, z. Suppose $[\because]$ is a bilinear product on V satisfying $[v w]=$ $-[w v] \forall v, w \in V$ and $[x y]=z,[x z]=y,[y z]=0$. Show that V with this product is a Lie algebra.

A 2. 15 points

(i) State the definition of a matrix Lie group.
(ii) Show that the set of matrices $O(n)=\left\{A \in \operatorname{Mat}(n ; \mathbb{C}) \mid A^{T} A=\mathbf{1}\right\}$ is a matrix Lie group for any positive integer n (don't forget to show, in particular, that it is a group).
(iii) Is $O(n)$ compact? Prove your claim.

A 3. 15 points

(i) The group $S U(2)$ is the group of all 2×2 unitary matrices of determinant 1. Show that the Lie algebra of $S U(2)$ is

$$
\operatorname{su}(2)=\left\{A \in \operatorname{Mat}(2 ; \mathbb{C}): A^{\dagger}=-A, \operatorname{Tr}(A)=0\right\}
$$

i.e. it is the set of all 2×2 anti-hermitian traceless matrices (you can use without proof the properties of the exponential).
(ii) Let G be a matrix Lie group with Lie algebra \mathfrak{g}. Suppose any element of G is of the form e^{g} for some $g \in \mathfrak{g}$. Suppose also that the Baker-CampbellHausdorf formula for $e^{g} e^{g^{\prime}}$ converges for any $g, g^{\prime} \in \mathfrak{g}$. Show that if \mathfrak{g} has an ideal \mathfrak{h}, then G has a normal subgroup $H=\exp \mathfrak{h}$ (you can use without proof the relation between Ad and ad, and the basic properties of the exponential).
(iii) Consider $s l(2 ; \mathbb{C})$, the algebra of 2 by 2 traceless complex matrices. Let $\mathfrak{h} \in \operatorname{sl}(2 ; \mathbb{C})$ be the subalgebra

$$
\mathfrak{h}=\left\{\left(\begin{array}{cc}
0 & a \\
a & 0
\end{array}\right), \quad a \in \mathbb{C}\right\}
$$

Given that \mathfrak{h} is a Cartan subalgebra of $s l(2 ; \mathbb{C})$, find the roots and the corresponding root space decomposition.

B4. (i) Determine the center $Z(H)$ of the Heisenberg group H, and show that it is isomorphic to \mathbb{R}. Is $Z(H)$ a subgroup of H ? Is it a normal subgroup? Prove your claims. Show that the quotient group $Q=H / Z(H)$ is abelian, and isomorphic to $\mathbb{R} \times \mathbb{R}$. Show that there does not exist any semi-direct product $Q \ltimes Z(H)$ isomorphic to H.
(ii) Show that the exponential mapping from the Lie algebra of the Heisenberg group to the Heisenberg group is bijective.
(iii) Describe the group $S U(2)$ as a subset of \mathbb{R}^{4}.

B 5. (i) Using the BCH formula

$$
\log \left(e^{X} e^{Y}\right)=X+\int_{0}^{1} d t \frac{\log \left(e^{\operatorname{ad} X} e^{\operatorname{tad} Y}\right)}{1-\left(e^{\operatorname{ad} X} e^{\operatorname{tad} Y}\right)^{-1}}(Y)
$$

and the properties of the exponential, show that

$$
\log \left(e^{A} e^{B}\right)=\frac{u}{1-e^{-u}} A+B
$$

in the case where $[A, B]=u A$ for some complex number u. Discuss what happens in the case where $u \rightarrow 0$. Hint: first use the properties of the exponential to prove $e^{A} e^{B}=e^{B+u A} e^{A}$.
(ii) In two dimensions, the Poincaré algebra has three generators: the energy H, the momentum P and the boost operator B. They satisfy the commutation relations

$$
[P, H]=0, \quad[B, P]=H, \quad[B, H]=P
$$

Using the formula obtained in (i), evaluate the operator U in

$$
e^{i x P} e^{i x H} e^{\theta B}=e^{U}
$$

where x, θ are real numbers.

B 6. A derivation D on a Lie algebra L is a linear map $D \in g l(L)$ with the property that $D([x y])=[D(x) y]+[x D(y)]$ for all $x, y \in L$.
(i) Prove that the commutator of two derivations, $\left[D_{1}, D_{2}\right]$, is a derivation.
(ii) Prove that the kernel of a derivation $\operatorname{ker}(D)=\{x \in L: D(x)=0\}$ is a subalgebra. Is it also an ideal?
(iii) Given a derivation D on L, prove that the bilinear form $\alpha(x, y)=\kappa(x, D(y))$, where κ is the Killing form $\kappa(x, y)=\operatorname{Tr}(\operatorname{ad} x \operatorname{ad} y)$, is anti-symmetric, $\alpha(x, y)=-\alpha(y, x)$.

