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Material covered

• BC Hall section 1 + normal subgroups, quotients, semidirect products, isomorphism the-
orem:

A normal subgroup of a group G is a subgroup N such that ghg−1 ∈ N for all g ∈ G and
h ∈ N . We can also write this gNg−1 ⊂ N for all g ∈ G. To denote that N is a normal
subgroup of G, we write

N / G.

In general, to denote that H is a subgroup of G, we write H < G. Normal subgroups
allow us to define quotients. Given two sets of group elements S1 ⊂ G and S2 ⊂ G

(not necessarily subgroups), the multiplication is defined as the element-wise product,
S1S2 = {s1s2 : s1 ∈ S1, s2 ∈ S2}. The g-left coset of a set S is the set of group
elements gS = {gs : s ∈ S}. If N is a normal subgroup of G, then the set of left cosets
G/N = {gN : g ∈ G} forms a group. Indeed, the product of 2 left cosets is a left coset:

g1Ng2N = g1g2g
−1
2 Ng2N = g1g2N

where in the last line we used the fact that g−1
2 Ng2 ⊂ N so that g−1

2 Ng2N ⊂ N , and that
N contains the identity id, so that g−1

2 Ng2 also contains id, hence g−1
2 Ng2N contains N .

Associativity of the product is obvious. The inverse also exists in G/N :

(gN)−1 = g−1N

as well as the identity element idN = N , which can be checked by similar calculations.

The (first) isomorphism theorem tells us that, given a group homomorphism φ : G → H,
we have:

kerφ / G

Imφ < G

Imφ ∼= G/kerφ (1)

(where ∼= means isomorphic).

Finally, a concept related to that of normal subgroup is that of semi-direct product. Con-
sider two groups G and N , and let ψ : G → Aut(N) be a group homorphism from G to
the group of automorphisms of N . Let us denote by φg the automorphism that is image of
g, that is, ψ(g) = φg. The semi-direct product nψ of the two groups G and N , associated
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to the homomorphism ψ, is a group structure on the cartesian product G×N of elements
of G and N . For (g, h) ∈ Gnψ N and (g′, h′) ∈ Gnψ M , the product is defined by

(g, h)(g′, h′) = (gg′, hφg(h′)).

To check that this defines a group, we must check associativity,

(g, h)((g′, h′)(g′′, h′′)) = (g, h)(g′g′′, h′φg′(h′′)) = (gg′g′′, hφg(h′φg′(h′′)))

where the second member in the last term can be written hφg(h′)φg(φg′(h′′)) = hφg(h′)φgg′(h′′).
On the other hand,

((g, h)(g′, h′))(g′′, h′′) = (gg′, hφg(h′))(g′′, h′′) = (gg′g′′, hφg(h′)φgg′(h′′)

which is in agreement with the previous result. We must also check the presence of an
identity, id = (id, id) (obvious using φid = id and φg(id) = id, recall the general properties
of homomorphisms). Finally, we must check that an inverse exists. It is given by

(g, h)−1 = (g−1, φg−1(h−1))

because we have

(g, h)−1(g, h) = (id, φg−1(h−1)φg−1(h)) = (id, id)

and
(g, h)(g, h)−1 = (id, hφg(φg−1(h−1))) = (id, hφid(h−1)) = (id, id).

It turns out that G ∼= {(g, id) : g ∈ G} is a subgroup, and that N ∼= {(id, h) : h ∈ N} is a
normal subgroup. Indeed,

(g, h)−1(id, h′)(g, h) = (g−1, φg−1(h−1h′))(g, h) = (id, φg−1(h−1h′h)).

A special case of the semi-direct product is the direct product, where φg = id for all g ∈ G.
In this case, both G and N are normal subgroups.

An example of a semi-direct product occurs when looking at, for instance, O(n) with
n even. We know that matrices in O(n) have determinant ±1. Any A ∈ O(n) can be
written A = Ua where U ∈ SO(n) and a = diag(−1, 1, 1, . . . , 1) or a = 1, and this
in a unique way (the choice of a is uniquely determined by the determinant of A, and
then U = Aa−1 is unique). Clearly, the set of a as described is isomorphic to Z2 under
multiplications; we will simply denote this set by Z2. Hence, we have a bijective map
O(n) ↔ {(a, U) : a ∈ Z2, u ∈ SO(n)} by A = uA↔ (a, U). We may give the pairs (a, U)
a semi-direct product structure

(a, U)(a′, U ′) = (aa′, Uφa(U ′))
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with φa(U ′) = aU ′a−1. Clearly, φa is an automorphism of SO(n), and the map ψ : a 7→ φa

is a homomorphism from Z2 to Aut(SO(n)). But this semidirect product is in agreement
with the product in O(n), because we have

AA′ = UaU ′a′ = UaU ′a−1aa′ = Uφa(U ′)aa′.

Hence, we have found that
O(n) ∼= Z2 nψ SO(n).

So in particular, SO(n) is a normal subgroup of O(n), but Z2 is not.

• BC Hall chapter 2 complete

• BC Hall chapter 3 complete, but section 7 and 9 not in details

• BC Hall chapter 4 sections 1 and 2 only (please understand the principle of why we want
the BCH formula). In section 2, the proof of formula 4.10, essential in the proof of the
BCH formula, was greatly simplified:

A crucial step in proving the BCH formula is the following formula, for X(t) a smooth
matrix-valued function of t:

d

dt
eX(t) = eX(t)

[
1− e−adX(t)

adX(t)

(
dX(t)
dt

)]
.

We now prove it. The exponential can always be expanded in a power series, and differ-
entiated term by term. Then, we have

d

dt
eX(t) =

∞∑
j=0

1
j!
d

dt
(X(t))j =

∞∑
j=0

1
j!

j−1∑
k=0

X(t)k
(
d

dt
X(t)

)
X(t)j−k−1.

Let us consider the formal element Y such that [Y,X(t)] = d
dtX(t). Since adY is a

derivation, i.e. [Y,X1X2] = [Y,X1]X2 +X1[Y,X2], we have

d

dt
eX(t) = [Y, eX(t)] = Y eX(t)−eX(t)Y = eX(t)(−Y+e−X(t)Y eX(t)) = eX(t)(−1+e−adX(t))(Y ).

We note that the power series of −1+ e−adX(t) has no constant term, so we can write it as

−1 + e−adX(t) =
−1 + e−adX(t)

adX(t)
adX(t).

Since adX(t)(Y ) = [X(t), Y ] = − d
dtX(t), we then find

d

dt
eX(t) = eX(t)−1 + e−adX(t)

adX(t)

(
− d

dt
X(t)

)
which is the desired result.
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From this, we get the BCH formula. We consider eX(t) = eXetY , and e−X(t)deX(t)/dt =
e−tY e−XeXetY Y = Y . But also,

e−X(t) d

dt
eX(t) =

1− e−adX(t)

adX(t)

(
dX(t)
dt

)
.

Equating and inverting, we find

dX(t)
dt

=
adX(t)

1− e−adX(t)
(Y )

hence

log(eXeY ) = X +
∫ 1

0
dt

log(eadXetadY )
1− (eadXetadY )−1

(Y )

where we used
eadX(t) = AdeX(t) = Ad(eX)Ad(etY ) = eadXetadY .

• BC Hall, chapter 5, first page.

• JE Humphreys: we always restrict the field F to that of the complex numbers C. Sections:
1 (but just first 2 paragraphs of 1.2), 2, 3.1, 5.1 (except restrictions of killing form), 5.2,
5.3, 6.1, 6.2, 6.3 (but don’t worry about the proof), 7, 8.1, 8.2 (but again, don’t worry
about the proof).

Here are some of the main definitions and concepts:

A Lie algebra L is a vector space with a product [··], with the properties:

bilinearity : [(ax+ by)z] = a[xz] + b[yz], [x(ay + bz)] = a[xy] + b[xz]

antisymmetry : [xy] = −[yx]

Jacobi identity : [x[yz]] + [y[zx]] + [z[xy]] = 0. (2)

The adjoint representation ad maps L to gl(L), with the action given by

adx(y) = [xy].

The adjoint map is a homomorphism of Lie algebras, with gl(L) seen as a Lie algebra
where the bracket is given by the commutator of matrices [A,B] = AB−BA. Indeed, the
Jacobi identity gives

[adx, ady](z) = [x[yz]]− [y[xz]] = [[xy]z] = ad[xy](z)

hence [adx, ady] = ad[xy]. This is why it is called the adjoint representation. Also, for
any x ∈ L, the operator adx is a derivation on L. In general, a derivation D ∈ gl(L) has
the property

D([xy]) = [D(x)y] + [xD(y)].

We indeed have, again thanks to the Jacobi identity,

adx([yz]) = [x[yz]] = [[xy]z] + [y[xz]] = [adx(y)z] + [yadx(z)].
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A subalgebra I of L is a subspace of L which is closed under brackets, [xy] ∈ I ∀x ∈ I, y ∈ I.

An ideal I of L is a subspace of L with the property [xy] ∈ I ∀x ∈ I, y ∈ L. In particular,
an ideal is a subalgebra (but the opposite is not true in general).

A proper ideal of a Lie algebra L is an ideal other than {0} and than L itself.

The derived subalgebra of a Lie algebra L is a subalgebra of L obtained by taking linear
combinations of all possilble brackets of elements in L. That is, [LL] = span{[xy] : x, y ∈
L}.

A Lie algebra L is abelian if [LL] = {0}, that is, if all elements of L commute with each
other. Otherwise, it is nonabelian.

A simple Lie algebra is a Lie algebra that does not have proper ideal, and that is nonabelian.

If L is simple, then L = [LL] (easy to prove)

The derived series associated to a Lie algebra L is the series of Lie algebras L0, L1, L2, . . .

obtained by setting L0 = L and Ln+1 = [LnLn] for n = 1, 2, 3, . . ..

A Lie algebra L is solvable if its derived series terminate, i.e. if Ln = 0 for some n.

A semisimple Lie algebra is a Lie algebra which does not have solvable ideals other than
{0}.

The Killing form is a bilinear form on a Lie algebra L given by

κ(x, y) = Tr(adx ady).

The Killing form is symmetric, κ(x, y) = κ(y, x), and associative, κ([xz], y) = κ(x, [zy]),
thanks to the homomorphism property of ad and to cyclicity of the trace (easy to prove).

A bilinear form β on L is degenerate if ∃ x : β(x, y) = 0 ∀ y ∈ L. Otherwise, it is
nondegenerate.

Equivalent characterisations of a semisimple Lie algebra L are:

– L does not have abelian ideal (easy to prove)

– The Killing form on L is nondegenerate (harder to prove)

– L =
∐
j Ij (direct sum of Ij) where Ij are simple ideals (medium-easy to prove once

the second point is proven).

The theorem of Weyl (hard to prove) says that any finite-dimensional representaion of a
semisimple Lie algebra is completely reducible, i.e. is a direct sum of irreducible represen-
tations.

If L is semisimple, then any derivation D on L is of the form D = adz for some z ∈ L

(hard to prove; but see question 6.4).

By Shur’s lemma, if V is a vector space on which we have an irreducible representation φ
of a Lie algebra L, then any endomorphism of V that commutes with φ(x) for all x ∈ L

must be proportional to the identity endomorphism, 1.
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Given a representation φ, we may construct the trace form βφ(x, y) = Tr(φ(x)φ(y)). (The
Killing form is βad.) If L is semisimple and the representation is faithful, then the trace
form is nondegenerate (hard to prove; similar to nondegeneracy of Killing form).

Given a basis {xi} of a semisimple Lie algebra L, we may construct the dual basis {yi}
under βφ. It is the basis satisfying βφ(xi, yj) = δij . The Casimir element of a representation
φ acting on the vector space V is the endomorphism of V given by

Cφ =
∑
i

φ(xi)φ(yi).

It has the property that it commutes with all φ(x) for x ∈ L. That is, [Cφ, φ(x)] = 0 for
all x ∈ L. In particular, if φ is irreducible, then Cφ = dimL/dimV 1.

A toral subalgebra of a Lie algebra L is a subalgebra I of L such that all elements x ∈ I

are ad-diagonalisable, i.e. adx is a diagonalisable matrix.

One can prove that a toral subalgebra is abelian (medium-easy to prove).

A Cartan subalgebra is a maximal toral subalgebra.

A root is a non-zero linear functional α : H → C on a Cartan subalgebra H which
reproduces eigenvalues of adh for all h ∈ H. That is, if v is a common eigenvector of all
h ∈ H, then adh(v) = [hv] = α(h)v. The set of roots is denoted Φ.

The eigenspace in L corresponding to a linear functional α is denoted Lα. That is,

Lα = {x ∈ L : [hx] = α(h)x ∀ h ∈ H}.

If α does not reproduce the eigenvalues of h, then Lα = {0}. α is a root if and only if
Lα 6= {0} and α 6= 0. If α = 0, then L0 is the set of elements of L that commute with all
of H (the centraliser of H in L). A theorem says that L0 = H (hard to prove).

The root space decomposition of a Lie algebra L is the decomposition into eigenspaces of
H. That is,

L = H ⊕
∐
α∈Φ

Lα.

(see additional exercise 1).

Solutions to exercises

(note: I tend to denote by id the abstract identity in a group, as well as identity maps, and
by 1 the identity matrix in any dimension, when no confusion is possible).

BC Hall, Chapter 1
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1. The center of a group G is Z(G) = {g ∈ G | gh = hg ∀h ∈ G}. Certainly, the identity
id ∈ Z(G). Also, if g ∈ Z(G), then gh = hg ⇒ h = g−1hg ⇒ hg−1 = g−1h for all h ∈ G,
hence also g−1 ∈ Z(G). Finally, if g1, g2 ∈ Z(G), then g1h = hg1 ⇒ g1hg2 = hg1g2 ⇒
g1g2h = hg1g2 for all h ∈ G, where in the last step we used g2h = hg2. Hence, also
g1g2 ∈ Z(G). These are the three conditions in order to have a subgroup. (Note: here and
below we use without stating it the associativity of groups).

2. (a) H is not a subgroup, because it does not contain the identity element 0 (here, the
group is under addition).

(b) H is a subgroup: it contains the identity 0, every integer of the form 3n (for n ∈ Z)
has an inverse −3n, and 3n+ 3m = 3(n+m).

(c) H is not a subgroup, there are elements that do not have an inverse: any matrix of
determinant, say, 2, is in H, but has an inverse of determinant 1/2, outside of H.

(d) H is a subgroup: it contains the identity 1, the product of any two matrices with
integer entries is a matrix with integer entries, and the inverse of a matrix is obtained
by evaluating the determinants of submatrices (which are always integer numbers),
and dividing by the determinant of the matrix (which is 1 because this is a subgroup
of SL(n; R)).

(e) H is a subgroup: it contains the identity 1, the product of any two matrices with
rational entries is a matrix with rational entries, and the inverse of a matrix is obtained
via rational functions of the entries – determinant of submatrices divided by the
determinant of the matrix – since determinants are polynomials in the matrix entries.

(f) H is not a subgroup: no element in H, except for the identity 0, possess an inverse,
since in Z9 inverses of even numbers are odd numbers (e.g. the inverse of 8 is 1 since
1 + 8 = 9 = 0 mod 9, but 1 is not in H).

3. First, we know that g−1g = gg−1 = id. Hence, (g−1)−1g−1 = id ⇒ (g−1)−1 = g by
right-multiplication by g. Second, g−1g = id ⇒ h−1g−1gh = id (*) by left-multiplication
by h−1 and right-multiplication by h and using h−1h = id. Then, right-multiplication
of (*) by (gh)−1 gives h−1g−1gh(gh)−1 = (gh)−1, hence using gh(gh)−1 = id, we find
h−1g−1 = (gh)−1. Finally, since idid = id, we immediately see that id−1 = id (we use
uniqueness of the inverse, which satisfies g−1g = gg−1 = id).

4. If there is an isomorphism φ from G to H, then we have a bijective map φ : G→ H that
preserves the group action of G, φ(g1g2) = φ(g1)φ(g2) (*) for all g1, g2 ∈ G. We need
to show that there is a bijective map ψ : H → G that preserves the group action of H,
ψ(h1h2) = ψ(h1)ψ(h2) for all h1, h2 ∈ H. Since φ is bijective, then to every element h ∈ H
corresponds at least one element g of G (surjectivity), and in fact exactly one element g
(injectivity). Hence, to every h ∈ H we can associated a unique g ∈ G: this defines the
inverse map φ−1. The map φ−1 is bijective: surjective, every g ∈ G is in the image of
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φ−1, since the map φ associates a h ∈ H for every g ∈ G; and injective, there is only
one h mapping to any given g by φ−1, since the map g associates only one h ∈ H for
every g ∈ G. We may then take ψ = φ−1, and all we need to show is that it preserves
the group action of H. Note that ψ(φ(g)) = g by construction. Hence, from (*) we have
g1g2 = ψ(φ(g1)φ(g2)). Now for any h1, h2 ∈ H, consider g1 = ψ(h1) and g2 = ψ(h2). Then
we find ψ(h1h2) = ψ(h1)ψ(h2). This completes the proof.

Note here that when we say that we have map from G to H, we already say many things:
to every g ∈ G there is exactly one h ∈ H. The condition of bijectivity only gives us the
opposite: to every h ∈ H there is exactly one g ∈ H.

5. The set of positive numbers R+ contains the identity 1, every x ∈ R+ has an inverse
1/x ∈ R+, and for x1, x2 ∈ R+ we have x1x2 ∈ R+: hence R+ is a subgroup of R∗ (the group
of the non-zero reals under multiplication). To show isomorphism to R (the group of the
reals under addition), we contruct an explicit bijective map that preserves the group action:
take φ to be R+ → R : x 7→ φ(x) = log(x). Clearly, log(x1x2) = log(x1) + log(x2) for all
x1, x2 ∈ R+, so this preserves group action. It is also bijective: the set {log(x) : x ∈ R+}
is the set R, and if log(x1) = log(x2), then x1 = x2.

6. Consider the set of bijective maps Aut(G) = {φ : G → G |φ(gg′) = φ(g)φ(g′)∀ g, g′ ∈ G}
(this is the set of authomorphisms: isomorphisms from G to G). First, the composition of
maps φ1, φ2 ∈ Aut(G) gives a map φ1 ◦ φ2 that is in Aut(G): it is still bijective from G

to G (there is a unique pre-image g′ ∈ G for any g ∈ G under φ1 by bijectivity, and then
a unique pre-image g′′ ∈ G for that g′ under φ2), and φ1(φ2(gg′)) = φ1(φ2(g)φ2(g′)) =
φ1(φ2(g))φ1(φ2(g′)). Second, by construction we have associativity: ((φ1 ◦ φ2) ◦ φ3)(g) =
(φ1 ◦φ2)(φ3(g)) = φ1(φ2(φ3(g))) and (φ1 ◦ (φ2 ◦φ3))(g) = φ1((φ2 ◦φ3)(g)) = φ1(φ2(φ3(g))).
Third, the identity map id : g 7→ g is in Aut(G), and has the property id◦φ = φ◦ id = φ for
any φ ∈ Aut(G), so it is a candidate for the identity of the group. Finally, since φ ∈ Aut(G)
is an isomorphism, there is a unique inverse φ−1 such that φ ◦ φ−1 = φ−1 ◦ φ = id (see the
answer to question 4).

7. Certainly, φg is bijective: for any h ∈ G, we have that φg(g−1hg) = h, so φg is surjective.
Also, if φg(h) = φg(h′), then ghg−1 = gh′g−1 ⇒ hg−1 = h′g−1 ⇒ h = h′, hence φg

is injective. Also, φg(hh′) = ghh′g−1 = ghg−1gh′g−1 = φg(h)φg(h′). Hence, φg is an
automorphism.

In order to have a homomorphism, we only need to check that the group multiplication
of G gives rise to the group multiplication of Aut(G). We have φgg′(h) = gg′h(gg′)−1 =
gg′h(g′)−1g−1 = φg(φg′(h)) for all h ∈ G, hence φgg′ = φg ◦ φg′ .

Finally, the kernel is the set of g ∈ G such that φg = id. This is the set {g ∈ G | ghg−1 =
h ∀h ∈ G}, which is {g ∈ G | gh = hg ∀h ∈ G} = Z(G).
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8. Consider, for instance,

A =

(
1 0
0 −1

)
, B =

(
0 1
1 0

)
.

They give

AB =

(
0 1
−1 0

)
6= BA =

(
0 −1
1 0

)
.

9. Same question as 1 !!!

10. We have (
1 2 3
2 1 3

)(
1 2 3
1 3 2

)
=

(
1 2 3
2 3 1

)
and (

1 2 3
1 3 2

)(
1 2 3
2 1 3

)
=

(
1 2 3
3 1 2

)
.

11. Take for instance g(n) = 2n and f(n) = [n/2] (where [x] is the integer part of x, which
can be taken as the integer number m ≤ x that minimises x − m; we can generalise to
[x]N = N [x/N ] for any positive integer N , giving the number m ≤ x that is a multiple of
N and that minimises x−m). We find (f ◦ g)(n) = [(2n)/2] = [n] = n for all n ∈ Z, hence
f ◦ g = id. On the other hand, (g ◦ f)(n) = 2[n/2] = [n]2, with [n]2 = n for n even and
[n]2 = n− 1 for n odd. Hence, g ◦ f 6= id. Note that g is not onto (surjective), and that f
is not one-to-one (injective).

12. Consider a1 + a2 mod n. Suppose we can write aj = kjn + bj (j = 1, 2) for kj integers
and bj ∈ {0, . . . , n − 1}. Then, a1 + a2 = (k1 + k2)n + b1 + b2. If b1 + b2 < n, then we
have found a1 + a2 mod n = b1 + b2. On the other hand, if b1 + b2 ≥ n, then we can write
a1 + a2 = (k1 + k2 + 1)n + (b1 + b2 − n), and we know that b1 + b2 − n ∈ {0, . . . , n − 1}.
Hence, in this case a1 + a2 mod n = b1 + b2 − n. But likewise, if we do b1 + b2 in the
group Zn, we obtain b1 + b2 is b1 + b2 < n, and b1 + b2 − n if b1 + b2 ≥ n. Hence, since
bj = aj mod n, we have found that a1 + a2 mod n = (a1 mod n) + (a2 mod n) where
on the left-hand side, addition is in Z, and on the right-hand side, it is in Zn. Hence, we
have a homomorphism from Z to Zn.

13. If G is commutative, then g1g2 = g2g1 for any g1, g2 ∈ G. If H is a subgroup of G, then
ghg−1 = hgg−1 = h for any g ∈ G, hence H is normal.

Certainly, if h, g ∈ G, then ghg−1 ∈ G, so G is normal. Also, gidg−1 = gg−1 = id, so the
subgroup {id} is normal.

If h ∈ Z(G), then ghg−1 = hgg−1 = h for any g ∈ G. Hence, the group Z(G) (we already
showed that it is a group in question 1) is normal.

If φ : G → H, then kerφ = {g ∈ G |φ(g) = id}. First, we show that kerφ is a subgroup.
Consider g, g′ ∈ kerφ, then φ(gg′) = φ(g)φ(g′) = id, hence gg′ ∈ kerφ. Also, for any

9



homomorphism we have φ(id) = id, hence, id ∈ kerφ. Finally, if g ∈ kerφ, then φ(g−1) =
φ(g)−1 = id so that g−1 ∈ kerφ. Hence, kerφ is a subgroup. Then, for h ∈ kerφ, we have
φ(ghg−1) = φ(g)φ(h)φ(g−1) = φ(g)idφ(g−1) = φ(gg−1) = φ(id) = id so that ghg−1 ∈ kerφ
for any g ∈ G. Hence, kerφ is a normal subgroup.

SL(n; R) is the subgroup ker det, where det is the homomorphism GL(n; R) → C given
by the determinant of the matrix (homomorphism since det(gg′) = det(g) det(g′)). Hence,
SL(n; R) is a normal subgroup by the proof above.

BC Hall, Chapter 2

1. A subset of a topological space is dense in the space if its closure is the whole space. To
find the closure of K = {e2πina : n ∈ Z} for a irrational, we look at the complement in
S1, and take the union of all open sets included in the complement (the closure is the
complement of that). Any open set of S1 (with the standard topology) contains an open
arc. But all open arcs contain at least one point of K (since given any two points in K, we
find always more points in K by repeating the arc they form, and eventually some point
falling in the original arc, so we will find that there are two points forming an arc less
than half the length). Hence the complement of K does not contain any interval, so the

closure of K is S1. Now we can write G =

{(
eit 0
0 eiatn

)
| t ∈ [0, 2π], n ∈ Z

}
, and by

the previous argument we find this is dense in the space of diagonal matrices with elements
in S1 on the diagonal. Hence, G is as described in the question.

2. IfA preserves the inner product, then 〈Ax,Ay〉 = 〈x, y〉 for all x, y, so that
∑

i,j,k Ai,jxjAi,kyk =∑
i xi, yi. Making x and y running independently through basis elements, we findAi,jAi,k =

δj,k, which is the statement that the column vectors of A are orthonormal. The opposite
direction of the argument works in a similar fashion, by writing x and y as arbitrary linear
combinations of basis elements.

We have 〈Bx, y〉 =
∑

i,j Bi,jxjyi =
∑

i,j xj(B
T )j,iyi = 〈x,BT y〉. Hence, if 〈Ax,Ay〉 =

〈x, y〉 for all x, y, then 〈x,ATAy〉 = 〈x, y〉 for all x, y. Since the inner product is non-
degenerate, this implies that ATA = 1.

3. Following the solution to 2, we see that 〈Bx, y〉 = 〈x,B†y〉. Hence, 〈Ax,Ay〉 = 〈x,A†Ay〉.
Suppose A†A = 1. We immediately conclude that 〈Ax,Ay〉 = 〈x, y〉 for all x, y. On the
other hand, suppose that 〈Ax,Ay〉 = 〈x, y〉 for all x, y. Then we have 〈x,A†Ay〉 = 〈x, y〉,
and since the inner product is non-degenerate, we deduce A†A = 1.

4. We immediately have [x, y]n,k =
∑n+k

i=1 giixiyi =
∑n+k

i,j=1 xigi,jyj = 〈x, gy〉. Hence, if
[Ax,Ay]n,k = [x, y]n,k for all x, y, then 〈x,AT gAy〉 = 〈x, gy〉 for all x, y so that AT gA = g.
The opposite direction is straightforward.
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Clearly O(n, k) and SO(n, k) are subsets of GL(n+ k,R), since they are sets of matrices
with non-zero determinant. Moreover, they are closed under matrix multiplication, they
contain the identity, and they contain the inverse of every element. Hence they are sub-
groups. In order to show that they are matrix Lie groups, we only need to show that they
are closed in GL(n+k,R). But if a sequence of matrices {Am : m = 0, 1, 2, 3, . . .} in O(n, k)
or SO(n, k) converges to a matrix A = limm→∞Am, then the sequence of determinants
{det(Am) : m = 0, 1, 2, 3, . . .} converges on the reals, since the determinant is a continuous
function (from Rn2

to R with the usual topologies). But since det(Am) ∈ {−1, 1} for all
m (in the O(n, k) case) or det(Am) = 1 for all n (in the SO(n, k) case), the fact that the
sequence of determinant converges means that det(A) ∈ {−1, 1} (in the O(n, k) case) or
det(A) = 1 (in the SO(n, k) case), so that the limit matrix A is in O(n, k) or SO(n, k).
Hence, the subgroup is closed.

5. Similar to the above.

6. Using cos2 θ + sin2 θ = 1 we immediately find

ATA =

(
cos θ sin θ
− sin θ cos θ

)(
cos θ − sin θ
sin θ cos θ

)
=

(
1 0
0 1

)

which shows that A ∈ SO(2). Let us denote A = A(θ). Similarly, using cos θ sinφ +
sin θ cosφ = sin(θ+φ) and cos θ cosφ−sin θ sinφ = cos(θ+φ) we find A(θ)A(φ) = A(θ+φ).

If some matrix A =

(
a b

c d

)
is in O(2), then we have three conditions: a2 + c2 = 1,

b2 + d2 = 1 and ab+ cd = 0. The set of all solutions (over the reals) to the first equation
is the set (a, c) ∈ {(cos θ, sin θ) : θ ∈ [0, 2π)} (because we know that −1 ≤ a ≤ 1, so
we can write a = cos θ for some θ ∈ [0, π), and we find c = ± sin θ, where the sign
can be taken care of by extending the range of θ to [0, 2π)); similarly for the second
equation (where we will use the parameter φ instead of θ). Hence the third equation
becomes cos θ cosφ + sin θ sinφ = 0, hence cos(θ − φ) = 0. The set of all solutions is
given by the set of solutions to the equations θ − φ = ±π/2,±3π/2. For any given θ,
there are exactly two solutions for φ, which are θ− 3π/2, θ− π/2; or θ− π/2, θ+ π/2; or
θ + π/2, θ + 3π/2; whichever keep φ ∈ [0, 2π). In all cases, the two solutions for (b, d) are
(− sin θ, cos θ), (sin θ,− cos θ).

7. We need to check that AT
(

1 0
0 −1

)
A =

(
1 0
0 −1

)
. We have:

(
cosh t sinh t
sinh t cosh t

)(
1 0
0 −1

)(
cosh t sinh t
sinh t cosh t

)
=

=

(
cosh t − sinh t
sinh t − cosh t

)(
cosh t sinh t
sinh t cosh t

)
=

(
1 0
0 −1

)
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using cosh2 t − sinh2 t = 1. For the multiplication rule, the argument is like that of the
previous question.

For some matrix A =

(
a b

c d

)
to be in O(1; 1), there are three conditions (over the reals):

a2 − c2 = 1, b2 − d2 = −1 and ab− cd = 0. Consider the first equation. We have a ≥ 1 or
a ≤ 1 so we can always write a = η cosh t for η ∈ {+1,−1} and t ∈ [0,∞). Then, we find
c = ± sinh t, and the sign can be taken care of by extending the range of t to R. Hence,
the set of solutions to the first equation is (a, c) = {(η cosh t, sinh t) : t ∈ R, η ∈ {+1,−1}}.
likewise, for the set of solutions to the second equation we have (b, d) = {(sinh r, ε cosh r) :
r ∈ R, ε ∈ {+1,−1}}. The last equation is then η cosh t sinh r − ε sinh t cosh r = 0 ⇒
sinh(r − ηεt) = 0. The unique solution is r = ηεt, and we find (b, d) = (ηε sinh t, ε cosh t).
This gives the four possibilities displayed in the question.

8. For the group SU(2), the three conditions on the matrix A =

(
a b

c d

)
coming from

A†A = 1 are |a|2 + |c|2 = 1, |b|2 + |d|2 = 1 and a∗b + c∗d = 0, and the condition saying
that A has unit determinant is ad − bc = 1. Given a and c satisfying the first equation,
we can solve the third for b, giving b = −c∗d/a∗. The unit determinant condition then is
ad+ |c|2d/a∗ = 1 so that d = a∗, which implies b = −c∗.

9. A matrix A =

(
a b

c d

)
in Sp(1; R) (or Sp(1; C)) satisfies ATJA = J for J =

(
0 1
−1 0

)
.

We have ATJA =

(
0 ad− bc

bc− ad 0

)
, so that we only have one condition, ad − bc =

det(A) = 1. Hence, Sp(1; R) = SL(2; R) and Sp(1; C) = SL(2; C). Since Sp(1) =
Sp(1; C) ∩ U(2), we have that Sp(1) is the set of unitary 2-by-2 matrices (U(2)), with
the only additional condition that they have determinant 1 (since Sp(1; R) = SL(2; R)).
Hence, this is SU(2).

10. The center Z(H) of a group H is the set of all group elements that commute with the
whole group: Z(H) = {h |hg = gh∀ g ∈ H : h ∈ H}. This is certainly a subgroup, which
is abelian and normal. With

h =

 1 a b

0 1 c

0 0 1


and h′ of a similar form, we find

hh′ =

 1 a′ + a b′ + ac′ + b

0 1 c′ + c

0 0 1

 .

For h to commute with everything, we need ac′ = a′c for all a′ and c′, hence a = c = 0.
This is isomorphic to the abelian group R. The quotient group H/Z(H) is the group of
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left-cosets, {hZ(H) : h ∈ H}. This is the group of “matrices”

q =

 1 a R
0 1 c

0 0 1

 .

For q, q′ ∈ H/Z(H), the product is

qq′ =

 1 a′ + a R
0 1 c′ + c

0 0 1

 .

This is clearly abelian, qq′ = q′q. In fact we see that H/Z(H) ∼= R× R.

11. We essentially follow the suggested solution. First, connectedness is clear in the case
n = 2 by question 6: the continous path from A(0) = 1 to A(θ) can be chosen to be
simply A(t/θ) : t ∈ [0, 1]. Second, we must realise that SO(n) acts faithfully on Rn:
any non-identity element of SO(n) changes some vector of Rn (by definition of the group
itself). Similarly, it is clear that any two unit vectors in R2 can be connected by a SO(2)
transformation. Let us consider some non-identity element A ∈ SO(n), and a (unit)
vector w which is affected by it: Aw = v 6= w. Let us look at the subspace of Rn

spanned by w and v. This a two-dimensional subspace with orthonormal basis w and
(v − (w · v)w)/|v − (w · v)w|, for instance. Let us take B(t) in the subgroup of SO(n)
isomorphic to SO(2) and corresponding to rotations in the w − v plane. By the previous
argument on SO(2), there is a continuous path B(t) : t ∈ [0, 1] such that B(0) = 1 and
B(1)v = w. Hence, let us consider A(t) = B(t)A; this is such that A(0) = A and that A(1)
preserves w. Since A(1) preserves w, it must be element of the subgroup of SO(n) that
preserves w (it is easy to check that this is a Lie subgroup); this subgroup acts faithfully on
the hyperplane {x |x ·w = 0 : x ∈ Rn} and preserves lengths there, hence it is isomorphic
to SO(n − 1). Therefore, we have shown that any element of SO(n) can be connected
continuously to an element of SO(n− 1), and by induction to an element of SO(2), which
we showed can be connected to the identity.

12. Here we must simply use the fact that any symmetric, positive-definite matrix has a
unique symmetric, positive-definite square root. Certainly, for A ∈ SL(n; R), the matrix
ATA is symmetric and positive definite (the latter because 〈x,ATAx〉 = 〈Ax,Ax〉 > 0
by positive-definiteness of the inner-product). Hence, we may write ATA = H2 where
H is symmetric and positive-definite (with determinant 1). Let us consider the matrix
R = AH−1. We have RTR = H−1ATAH−1 = H−1H2H−1 = 1. Hence, this matrix is
in SO(n). This shows that it is possible to write A = RH. To show uniqueness, suppose
we may write A = R′H ′ with R′ and H ′ different matrices (with the properties stated).
Then, ATA = (H ′)2, and by uniqueness of the square root, we must have H ′ = H, which
implies that we have R′ = R.
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13. Consider A ∈ SL(n; R), and its polar decomposition A = RH. Since SO(n) is connected,
there is a path R(t) : t ∈ [0, 1] such that R(0) = R and R(1) = 1, so we may form the
path A(t) = R(t)H, that reaches A(1) = H. Now since H is real and symmetric, we can
diagonalise with a real orthogonal matrix T , that is, H = T−1DT with D diagonal with
determinant 1. It is then simple to make a path from D to 1 (while of course keeping
the determinant 1): bring the elements of Dii : i ∈ {0, . . . , n − 1} to 1 in a continuous
way without crossing 0 (this can be achieved, because Dii > 0∀ i by positive-definiteness
of D) and write Dnn = 1/

∏n−1
i=1 Dii. This makes a path D(t) : t ∈ [1, 2] with D(1) = D

and D(2) = 1, and write H(t) = T−1D(t)T so that A(t) : t ∈ [1, 2] is continuous with
A(1) = H and A(2) = 1. Thus, we have a continuous path A(t) : t ∈ [0, 2] from A(0) = A

to A(2) = 1.

14. Consider A ∈ GL(n; R)+. We may consider the continuous path A(t) = f(t)A : t ∈ [0, 1]
with f(t) ∈ R+ a continuous function, and f(0) = 1, f(1) = 1/(det(A))1/n. Then,
A(0) = A and A(1) ∈ SL(n; R), and we can use the results of the previous question to
make a continuous path from A(1) to 1.

15. Done in class.

16. Consider a Lie group homomorphism φ from R to S1. We have φ(a + b) = φ(a)φ(b)
by the homomorphism property. In particular φ(ka) = φ(a)k and φ(1) = φ(1/n)n for
all k = 1, 2, 3, . . . and n = 1, 2, 3, . . .. This gives φ(k/n) = φ(1/n)k = φ(1)k/n, hence
φ(r) = φ(1)r for all rational numbers r. For any real number x, there is a sequence of
rational numbers {rj : j = 1, 2, 3, . . .} so that limj→∞ rj = x. Then, by continuity of the
homomorphism φ (since it is a Lie group homomorphism, it is continuous), we have that
limj→∞ φ(rj) = φ(x), from which we find φ(x) = φ(1)x (using, of course, continuity of the
exponentiation). Since φ(1) ∈ S1, we may write φ(1) = eia for some a ∈ R, and we obtain
φ(x) = eiax.

BC Hall, Chapter 3

Most but not all questions of this chapter are relevant to / were covered in the course. The
questions which are not so relevant are: 1,3,14,16,19 (and for question 4 only the general idea is
of interest).

1. –

2. The Jordan canonical form of a M by M matrix A is a matrix J that can be obtained
form A by a similarity transformation, J = CAC−1, and which has a block-diagonal form
J = J1 ⊕ J2 ⊕ · · · ⊕ Jn, with each block associated to an eigenvalue λ1, . . . , λn and of
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dimensions, say, Mi by Mi (of course, M = M1 + . . .+Mn). The blocks are given by

Ji =



λi 1 0 0 · · ·
0 λi 1 0 · · ·
0 0 λi 1 · · ·
...

...
...

. . . · · ·
0 0 · · · 0 λi


.

The eigenvalues λ1, . . . , λn are the roots of the characteristic polynomial det(A−λ1) = 0.
The multiplicity of a given eigenvalue λi corresponds to the total number of times it
appears in all blocks of J . Hence, if all roots of the characteristic polynomial are distincts
(we often say simply that “all eigenvalues are distincts”), then all “blocks” are just 1-by-1
matrices, so the block diagonal form is just exactly diagonal. Hence, if all eigenvalues
are distincts, the matric A can be diagonalised. On the other hand, if they are not all
distincts, then the matrix A may or may not be diagonalisable (e.g. we may have many
1 by 1 blocks with the same eigenvalue - hence A may still be diagonalisable) Otherwise,
we see that J is of the form J = D + T , where D is diagonal with the eigenvalues on the
diagonal, and T is upper-triangular (with in fact just 1’s or 0’s on the line just to the right
of the diagonal, and 0’s everywhere else). Of course, each block is of the form Ji = λi1+Ti
with Ti upper triangular. Consider the big M by M matrix Ĵi which is zero everywhere
except for the Mi by Mi block Ji (and similarly for T̂i). Clearly we have J = Ĵ1 + . . .+ Ĵn,
and all these matrices commute with each other, [Ĵi, Ĵj ] = 0; likewise, T = T̂1 + . . . + T̂n

and [T̂i, T̂j ] = [T̂i, Ĵj ] = 0. Hence, we see that [T,D] = 0. Inverting the transformation,
we have

A = S +N

where S = C−1DC and N = C−1TC, with [S,N ] = C−1[D,T ]C = 0. Also, since T is
upper triangular, we know that TM = 0, hence that NM = C−1TMC = 0. Hence, we find
that S is diagonalisable (this is the semi-simple part of A) and that N is nilpotent (this is
the nilpotent part of A).

Note that for every Jordan block Ji, there is only one corresponding eigenvector of A
with eigenvalue λi (easy to construct from the explicit form of J). Hence if A is not
diagonalisable, then the number of eigenvectors is in general less then M ; but at worst
there will be one big Jordan block, and one eigenvector - so there is always at least one
eigenvector (all this is over C).

3. –

4. We only give the general idea. Consider some matrix A. If it’s diagonalisable, we’re
done. If not, then we know from above that there must be eigenvalues that have > 1
multiplicity – some roots of the characteristic polynomial are multiple. But we know that
when this happens for a polynomial, we can modify the coefficients of the polynomial
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by an infinitesimal amount to break the multiplicity and make all roots distinct (i.e.
the polynomial is

∏
i(λ − λi), and we may change the coefficients by making a change

λi 7→ λi + δλ). This corresponds to an infinitesimal change of matrix elements of A, and
the non-diagonalisable case can be obtained by taking this infinitesimal changes to zero.

Check for instance in the 2 by 2, real traceless case: A =

(
a b

c −a

)
, P (λ) = λ2−a2− bc

so the roots are λ = ±
√
a2 + bc which are not distinct iff a2 + bc = 0. So we may make

them distinct simply by b 7→ +̄deltab (if c 6= 0) so that a2 + bc 7→ 0 + δbc, or b 7→ b + δb

and c 7→ c+ δc (if c = 0) so that a2 + bc 7→ 0 + δbδc.

5. Take SL(2; R) and sl(2; R). We may take X = iπ1 which has trace 2iπ 6= 0, so X 6∈
sl(2; R), yet we have det(eX) = eTr(X) = e2iπ = 1 so eX ∈ SL(2; R).

6. Suppose G ∼= H, and consider the corresponding Lie algebras g and h. We know that
there is an isomorphism φ : G→ H, and we may construct the corresponding Lie algebra
homomorphism φ̃ : g → h by

tφ(X) =
d

dt
φ(etX)

∣∣∣∣
t=0

.

Since φ is an isomorphism, it maps homeomorphically (i.e. continuously and bijectively)
neighbourhoods of 1 ∈ G to neighbourhoods of 1 ∈ H. We also know that the exponential
mapping is a homeomorphism from Lie algebra neighbourhoods around 0 to Lie group
neighbourhoods around 1, for small enough neighbourhoods. Hence, not only for any
X ∈ g there is a unique Y ∈ h such that φ(etX) = etY for all t (theorem 3.18), but also,
for any Y ∈ h there is a unique X ∈ g such that φ(etX) = etY for all t. The reason for the
last assertion is: for any Y ∈ h and any given t ∈ R there is a unique etY ∈ H, hence there
is a unique group element gt ∈ G such that φ(gt) = etY (since φ is an isomorphism). But
looking at t small enough, gt is near to the dentity (since φ is continuous), so there is a
unique X such that etX = gt for all such small t (since exp is locally a homeomorphism),
hence etX = gt for all t (since gt form a one-parameter subgroup and by theorem 3.12).
Hence, for any Y ∈ h there is a unique X ∈ g such that φ̃(X) = Y . Hence φ̃ is bijective,
so it is an isomorphism.

7. We have the requirement ATJA = J with J = diag(1, 1, 1,−1). Hence, JATJ = A−1

using J2 = 1. Let us write A = etX . We find etJX
T J = e−tX for all t, which implies

and is implied by JXTJ = −X. These are the matrices in so(3, 1). For the general form,
consider first the diagonal: it must be 0 because J acts twice on it, hence it must equal
minus itself. Clearly, we may choose the 6 upper triangular elements at will, and the 6
lower triangular are determined. This gives

0 a b c

−a 0 d e

−b −d 0 f

c e f 0

 .
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8. The Lie algebra su(n) of SU(n) is the set of anti-hermitian matrices of trace 0 (as a
vector space over the reals). Consider a unitary, determinant-1 matrix A ∈ SU(n), and
consider X ∈ su(n). Then, AXA−1 still has trace 0 by cyclicity of the trace, and is still
anti-hermitian since (AXA−1)† = AX†A−1 = −AXA−1. It is also obviously true that sX
as trace zero and is anti-hermitian for s real, and that for X,Y ∈ su(n) the sum X + Y

has trace zero and is anti-hermitian. Also, we have Tr([X,Y ]) = Tr(XY − Y X) = 0 by
cyclicity, and [X,Y ]† = (XY − Y X)† = (Y †X† − X†Y †) = Y X − XY = −[X,Y ], so
[X,Y ] ∈ su(n).

9. The Lie algebra su(2) is the real linear space of all matrices that are anti-hermitian and
that have trace zero. With

X =

(
a b

c d

)
this gives the conditions a∗ = −a, d∗ = −d, b∗ = −c as well as a + d = 0. Hence, there
are three real parameters: say A,B,C with a = iA/2, d = −iA/2, b = (B + iC)/2,
c = (−B + iC)/2; all these parameters get added up under addition of matrices, and get
multiplied by a scalar under scalar multiplication of matrices, so we have linearly mapped
the linear space su(2) to the linear space R3 (the space of triplets (A,B,C)). We can
denote this linear map, which is invertible, by φ : su(2) → R3. Obviously, a basis in R3 is
(1, 0, 0), (0, 1, 0) and (0, 0, 1), so a corresponding basis in su(2) as obtained by φ−1 is that
given by E1, E2 and E3. Direct calculations give

[E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2.

This can be written as
[Ei, Ej ] =

∑
k

εijkEk. (3)

Hence, we see that

φ([Ei, Ej ]) =
∑
k

εijkφ(Ek) = φ(Ei)× φ(Ej)

by the standard definition of the vector product in R3.

10. su(2) was described above. On the other hand, so(3) is the real linear space of anti-
symmetric 3 by 3 real matrices:

so(3) =

X =

 0 a −b
−a 0 c

b −c 0

 : (a, b, c) ∈ R3

 .

To show isomorphism, we may simply choose a basis. We may use similar ideas as above:
consider a map ψ : so(3) → R3 given by X 7→ ψ(X) = (a, b, c) in the notation above. This
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is an invertible linear map, and the usual basis in R3 gives rise to the corresponding basis
in so(3):

F1 =

 0 1 0
−1 0 0
0 0 0

 , F2 =

 0 0 −1
0 0 0
1 0 0

 , F3 =

 0 0 0
0 0 1
0 −1 0


(that is, ψ(F1) = (1, 0, 0), ψ(F2) = (0, 1, 0), ψ(F3) = (0, 0, 1)). We see that the commuta-
tion relations give

[Fi, Fj ] =
∑
k

εijkFk.

Hence, we may consider an invertible linear map Φ : su(2) → so(3) defined by Φ(Ei) =
Fi, i = 1, 2, 3. By linearity, the maps is defined for all elements of su(2), and it is clearly
invertible, with Φ−1(Fi) = Ei (hence it is bijective). We immediately find that

Φ([Ei, Ej ]) = Φ(
∑
k

εijkEk) =
∑
k

εijkFk = [Fi, Fj ] = [Φ(Ei),Φ(Ej)].

Hence, by using bilinearity we can extend this relation to all elements of su(2):

Φ([X,X ′])[Φ(X),Φ(X ′)].

which shows that Φ is also a homomorphism. Hence it is an isomorphism.

11. sl(2; R) is the real linear space of real traceless 2 by 2 matrices,

sl(2; R) =

{
X =

(
a b

c −a

)
: (a, b, c) ∈ R3

}
.

We may proceed by constructing a basis in a similar fashion as above, since we have an
invertible linear map ζ : sl(2; R) → R3 given by ζ(X) = (a, b, c). The basis is

G1 =

(
1 0
0 −1

)
, G2 =

(
0 1
0 0

)
, G3 =

(
0 0
1 0

)
.

The commutation relations are

[G1, G2] = 2G2, [G1, G3] = −2G3, [G2, G3] = G1.

Following the hint, we see that CG1 +CG2, for instance, is a two-dimensional Lie subalge-
bra. On the other hand, the result (3) of question 9 can be written more generally, using
bilinearity and anti-symmmetry of both sides:

φ([X,X ′]) = φ(X)× φ(X ′)

for all X,X ′ ∈ su(2). Suppose there were a two-dimensional subalgebra in su(2). Since it
has to be a subspace, we can map it to a 2-dimensional subspace of R3 via φ: a plane in R3.
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But the vector product of any two vectors is a vector that is perpendicular to both, hence
a vector that is outside of the plane. With [X,X ′] = φ−1(φ(X) × φ(X ′)), we would find
that [X,X ′] is not in the original 2-dimensional subsapce of su(2), a contradiction. Hence,
there cannot be a 2-dimensional subalgebra in su(2). But there were an isomorphism
between su(2) and sl(2; R), we could map the 2-dimensional subalgebra CG1 + CG2 to a
2-dimensional subalgebra of su(2). Hence, there are no isomorphism.

If we complexify the algebras, however, things are different. Complexifying means consid-
ering the space of matrices over the complex instead of the reals (everything still works).
Of course, with complex vectors, the vector product does not necessarily gives something
perpendicular, so the argument above breaks down. We can write down an explicit iso-
morphism between su(2)C and sl(2; R)C. Indeed, simply write

Ψ(G1) = −2iE1, Ψ(G2) = E2 − iE3, Ψ(G3) = −E2 − iE3

which is possible because we are allowed to have complex coefficients. We immediately
see that Ψ(Gi), as a matrix, is nothing else than the standard matrix form of Gi for all
i, hence it is immediate that this is an isomorphism. But it is easy to work out more
explicitly the commutation relations and see that Ψ([Gi, Gj ]) = [Ψ(G1),Ψ(Gj)], and to
see that Ψ is invertible,

Ψ−1(E1) =
i

2
G1, Ψ−1(E2) =

G2 −G3

2
, Ψ−1(E3) = i

G2 +G3

2
.

Hence, Ψ is an isomorphism from sl(2; R)C to su(2)C. Note finally that sl(2; R)C is real-
isomorphic to sl(2; C), which is the real vector space of all traceless 2 by 2 complex matrices
(i.e. there is a real invertible linear map that preserves the bracket relations).

12. We have, for X,Y ∈ g, the homomorphism property

[AdA(X),AdA(Y )] = [AXA−1, AY A−1]

= AXA−1AY A−1 −AY A−1AXA−1

= A(XY − Y X)A−1 =

= AdA([X,Y ]), (4)

and also AdA is linear invertible (hence bijective) g → g, because AdA(X) = Y ⇒
AdA−1(Y ) = X.

13. I wish to present here a different “direct calculation”, slightly more conceptual. We know
that we can see adX as an operator on the linear space of matrices, given by

adX(Y ) = [X,Y ].

There are naturally two other operators that we can think of, on the space of matrices:
LX and RX, which are left- and right-multiplication,

LX(Y ) = XY, RX(Y ) = Y X.

19



Hence, on the space of matrices, we can write the operator adX as

adX = LX − RX.

Now, notice that the operators LX and RX commute with each other:

LX RX(Y )− RX LX(Y ) = LX(Y X)− RX(XY ) = XYX −XYX = 0.

But we know that the exponential of the sum of commuting operators is the product of
the exponentials:

eadX = eLX−RX = eLXe−RX .

Applying this to a matrix Y , we get

eadX(Y ) = eLXe−RX(Y ) = eLX(Y e−X) = eXY e−X = AdeX(Y ).

14. –

15. Consider a matrix X ∈ sl(2; R),

X =

(
a b

c −a

)
.

The eigenvalues are given by λ± = ±
√
a2 + bc. Assuming that X can be diagonalised,

X = U−1

(
λ+ 0
0 λ−

)
U ⇒ eX = U−1

(
eλ+ 0
0 eλ−

)
U.

Then, Tr(eX) = eλ+ + eλ− . If a2 + bc ≥ 0, then this is clearly ≥ −2. If a2 + bc < 0, then
this is 2 cos

√
−a2 − bc which is ≥ −2. This shows that the exponential map maps sl(2; R)

so a subset of SL(2; R) containing only matrices A with Tr(A) ≥ −2. The case where
the trace is exactly −2 is the case a2 + bc = −(2n + 1)2π2 with n an integer. But then,
eλ± = −1 so that X = −1, hence the only case with trace −2 is eX = −1. If X cannot be
diagonalised, then the eigenvalues are the same, so that a2 + bc = 0. But then, we can just
modify X 7→ X ′ by b 7→ b′ = b + δb and, if necessary, c 7→ c′ = c + δc, so that X ′ can be
diagonalised. The argument above then shows that Tr(X ′) is near to 2, and as δb, δc→ 0,
the trace tends to 2. Since the trace is a continuous function of the matrix elements, when
X cannot be diagonalised, then Tr(X) = 2 ≥ −2.

To go in the other direction, take a matrix A such that Tr(A) > −2. We want to find a X
such that eX = A. Let us write again

A =

(
a b

c d

)
.

The conditions are det(A) = 1 ⇒ ad− bc = 1 and Tr(A) > −2 ⇒ a+ d > −2. Again, we
consider the eigenvalues, and assume that the matrix can be diagonalised. The eigenvalues
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satisfy λ1λ2 = 1 and λ1 + λ2 > −2. Certainly, since A is a real matrix, we also have
λ1 +λ2 ∈ R. Hence if λ1 is complex λ1 = reiθ (r > 0, θ ∈ [0, 2π)), then reiθ+ r−1e−iθ ∈ R,
hence r = r−1 = 1 or θ = 0 or θ = π. In the case θ = 0, we always have λ1 +λ2 > −2. For
θ = π, this never occurs. Finally, for r = 1, then we must have θ 6= π. In all these cases,
with

A = U−1

(
reiθ 0
0 r−1e−iθ

)
U,

we see that we can write A = eX with

X = U−1

(
log r 0

0 − log r

)
U or X = U−1

(
iθ 0
0 −iθ

)
U

where the first is for the case θ = 0 and the second for the case r = 1. Recall that A
is real. We must check that X is real as well. In the first case looking at the Taylor
series expansion for r around 1, we see that X is a Taylor series in powers of A with real
coefficients, hence X is real for all r near enough to 1. By analytic continuation, it is then
real for all r > 0. In the second case, we can likewise write iθ = log(eiθ) and make a Taylor
series expansion for eiθ near to 1 – this is in fact convergent for any θ 6= π. We then have
X as a convergent power series in A with real coefficients, hence X is real as well. Hence,
we see that X is real and that it has trace 0. So, for any A ∈ SL(2; R) with Tr(A) > −2,
we have a X ∈ sl(2; R) such that eX = A.

16. –

17. The Lie algebra of the Heisenberg group is the set of matrices of the formX =

 0 a b

0 0 c

0 0 0

 : (a, b, c) ∈ R3

 .

Explicitly exponentiating gives

eX = 1 +

 0 a b

0 0 c

0 0 0

+
1
2

 0 0 ac

0 0 0
0 0 0

 =

 1 a b+ ac/2
0 1 c

0 0 1

 .

On the other hand, the matrices in the Heisenberg group areM =

 1 A B

0 1 C

0 0 1

 : (A,B,C) ∈ R3

 .

Hence, we find that the exponential map is

(a, b, c) 7→ (A,B,C) = (a, b+ ac/2, c).
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The inverse map can easily be obtained:

(A,B,C) 7→ (a, b, c) = (A,B −AC/2, C).

This makes it clear that the exponential map is onto (surjective: every (A,B,C) has
a pre-image) and 1-1 (injective: if (A,B,C) 6= (A′, B′, C ′), then (A,B − AC/2, C) 6=
(A′, B′ − A′C ′/2, C ′) - clear if A 6= A′ or C 6= C ′, and if A = A′ and C = C ′, it becomes
clear for B′ 6= B′ as well).

18. The algebra u(n) is the algebra of anti-hermitian n by n matrices. Hermitian matrices can
always be diagonalised by a unitary transformation (hence also anti-hermitian matrices),
so for X ∈ su(n) we can always write

X = UDU †

where U is unitary and D = idiag(λ1, . . . , λn) with λi ∈ R ∀i. Then, we find

eX = UeDU †.

We see that with λi 7→ λi + 2π, the matrix X changes, by eX stays the same. Hence, the
exponential mapping is not injective (1-1). However, any matrix M in the group U(n) of
unitary matrices can be diagonalised (since it has a basis of orthonormal eigenvectors), so
we can write

M = V QV †

where V is unitary and Q = diag(eiθ1 , . . . , eiθn) with θi ∈ R ∀i. Clearly, then, for any M
we can form a X by choosing U = V and λi = θi, so the exponential map is surjective
(onto).

19. –

20. If X is diagonalisable, then X = MDM−1 = AdM(D) for some invertible matrix M and
some diagonal matrix D. Then, we have

adX(Y ) = [X,Y ]

= [MDM−1, Y ]

= M [D,M−1YM ]M−1

= M [D,AdM−1(Y )]M−1

= MadDAdM−1(Y )M−1

= AdM adDAdM−1(Y )

= AdM adD (AdM)−1(Y ).

Now let us analyse adD. Taking the basis in gl(n; C) given by the matrices eij with a 1
at the position i, j and zero everywhere else, (eij)kl = δikδjl, we see that

adD(eij) = [D, eij ] = (Di −Dj)eij .
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That is, adD acts diagonally in that basis. Hence, we have found a basis (the basis of
matrices eij), an invertible linear map AdM on the space of matrices, and a map adD
that is diagonal in that basis, such that

adX = AdM adD (AdM)−1.

That is, we have shown that adX is diagonalisable.

BC Hall, Chapter 4

Problems 1-3 are relevant; problems 6, 7 are about connected Lie subgroup, not covered in
class; problems 4,5 are doable with the material taught in class, but slightly tedious, and they
have to do with the explicit series expansion of the BCH formula, which we didn’t really cover
in class.

1. The center Z(h) is the set of matrices

 0 u v

0 0 w

0 0 0

 that commute with all of h. That is,

we want to find all u, v, w ∈ R such that
 0 u v

0 0 w

0 0 0

 ,

 0 α β

0 0 γ

0 0 0


 = 0 ∀ α, β, γ ∈ R.

Direct calculation of the commutator gives 0 0 uγ − αw

0 0 0
0 0 0

 = 0

hence u = 0, w = 0. So the center is

Z(h) =


 0 0 v

0 0 0
0 0 0

 : v ∈ R

 .

Clearly, the commutator computer above just has an element in the upper right corner, so
it is in the center. Note that in general, a Heisenberg Lie algebra is an algebra such that
the center is one-dimensional, and such that the commutator of any two algebra element
is in the center.

Finally, let us compute the BCH formula in the Heisenber algebra case. First, specialising
the formula itself (theorem 4.3, p. 57): Since [X,Y ] commutes with both X and Y ,
this means that in the BCH formula, we only need to keep the terms containing only one
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commutator. Hence, we expand the exponentials in adX and adY , and keep only the terms
that lead to first order in these matrices. It is convenient to first expand the function:

g(1 + x) =
log(1 + x)

1− (1 + x)−1
=

x− x2/2 + . . .

1− (1− x+ x2) + . . .
=

1− x/2 + . . .

1− x+ . . .
= 1 + x/2 + . . .

With x = eadXetadY − 1, we only need to keep the first order of the exponentials, x =
adX + tadY + . . .. This gives

log(eXeY ) = X +
∫ 1

0
dt

(
1 +

1
2

(adX + tadY )
)

(Y ) = X + Y +
1
2
[X,Y ].

Second, by direct computation: take any two elements X,Y in h, in matrix form X = 0 u v

0 0 w

0 0 0

 and Y =

 0 α β

0 0 γ

0 0 0

, and evaluate their exponential:

exp

 0 u v

0 0 w

0 0 0

 = 1 +

 0 u v

0 0 w

0 0 0

+
1
2

 0 u v

0 0 w

0 0 0


2

+ . . .

where we have  0 u v

0 0 w

0 0 0


2

=

 0 0 uw

0 0 0
0 0 0



and

 0 u v

0 0 w

0 0 0


n

= 0 for all n ≥ 3. Hence,

exp

 0 u v

0 0 w

0 0 0

 =

 1 u v + uw/2
0 1 w

0 0 1

 . (5)

Then,

exp

 0 u v

0 0 w

0 0 0

 exp

 0 α β

0 0 γ

0 0 0

 =

 1 u v + uw/2
0 1 w

0 0 1


 1 α β + αγ/2

0 1 γ

0 0 1



=

 1 α+ u β + v + uγ + αγ/2 + uw/2
0 1 γ + w

0 0 1

(6)

On the other hand,

exp
(
X + Y +

1
2
[X,Y ]

)
= exp

 0 u+ α v + β + (uγ − αw)/2
0 0 w + γ

0 0 0
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and, using the previous calculation (5) for the exponential, we have

exp

 0 u+ α v + β + (uγ − αw)/2
0 0 w + γ

0 0 0

 =

 1 u+ α v + β + (uγ − αw)/2 + (u+ α)(w + γ)/2
0 1 w + γ

0 0 1


which agrees with (6)

2. In order for the matrix to be invertible, its determinant must be non-zero. If X is diago-
nalisable, X = UDU−1, then

1− e−X

X
= U


f(λ1) 0 · · ·

0 f(λ2) · · ·
...

...
. . .

U−1

where λj are the eigenvalues, and where

f(z) =
1− e−z

z
.

Then, the determinant is
∏
j f(λj), so we require f(λj) 6= 0 for all j. The zeroes of f

are z = 2πin with n any non-zero integer (at z = 0 there is no problem, because there
f(0) = 1). This gives the required condition. If X is not diagonalisable, then we can bring
it in a Jordan normal form, and we have

1− e−X

X
= U


f(λ1) ∗ · · ·

0 f(λ2) · · ·
...

...
. . .

U−1.

Again, the determinant is
∏
j f(λj), so we have the same condition.

3. If X and Y commute, then we have both adY = 0 and adX = 0 as matrices on the vector
space RX + RY , so that g(eadXetadY ) = g(1) = 1 (see problem 1 for g). This matrix
acting on vector Y gives g(eadXetadY )(Y ) = Y , which we have to put in the BCH formula
p. 57 (Hall). Hence, we have log(eXeY ) = X +

∫ 1
0 Y dt = X + Y as it should.

4. –

5. –

6. –

7. –
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JE Humphreys, Section 1

Here all questions are written and self-contained (no need to refer to Humphreys’ book).
I’m keeping the field of numbers to be F = C, so I avoid all questions having to do with the
particularly of the field over which we work.

Chapter 1 is essentially a warm up, to make sure basic principles of Lie algebras are under-
stood. I didn’t cover the A`, B`, C`, D` description of Lie algebras, but looking at the definitions
in Humphreys one sees that they correspond to the Lie algebras that we saw, in class. The
questions related to these are interesting, but for now I do not cover them. I give solutions to
the questions of more general character and more directly related to concepts discussed in class.

1. Let L be the real vector space R3. Define [xy] = x × y (cross product of vectors) for
x, y ∈ L, and verify that L is a Lie algebra. Write down the structure constants relative
to the usual basis of R3.

Solution

In order to have a Lie algebra, we need a vector space (ok), a bilinear form (ok) which
is anti-symmetric (ok), and which satisfies the Jacobi identity. To verify the later, we
evaluate:

[x[yz]] + [y[zx]] + [z[xy]] = x× (y × z) + y × (z × x) + z × (x× y) (7)

where we can use the “bac-cab” formula:

a× (b× c) = b(a · c)− c(a · b)

which gives, on the r.h.s. of (7)

y(x · z)− z(x · y) + z(y · x)− x(y · z) + x(z · y)− y(z · x) = 0.

The structure constants are the numbers cijk that arise when we evaluate the bracket using
an explicit basis ei ∈ L:

[eiej ] =
∑
k

cijkek.

If ei represent the usual orthonormal basis in R3, then we have ei × ej =
∑

k εijkek where
εijk is the completely anti-symmetric symbol. Hence, we find the structure constants

cijk = εijk.

2. Verify that the following equations, along with bilinearity and anti-symmetry, define a Lie
algebra structure on a 3-dimensional vector space with basis (x, y, z):

[xy] = z, [xz] = y, [yz] = 0

Solution
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Since the product is bilinear and anti-symmetric by assumption, we only need to show the
Jacobi identity, [u[vw]]+[v[wu]]+[w[uv]] = 0, for the triplet u, v, w being any triplet formed
with x, y, z (i.e. (x, x, x), (x, x, y), (x, z, y), (y, z, x), etc.). Indeed, the validity of the Jacobi
identity for any basis element implies its validity for the whole vector space, by bilinearity.
Note that the Jacobi identity is automatic by bilinearity and anti-symmetry whenever any
two of u, v, w are equal. Hence, we need to calculate only 6 terms, corresponding to the
6 triplets (x, y, z), (y, z, x), (z, x, y) (and opposite orders). Then, we calculate [u[vw]] for
these triplets: [x[yz]] = [x0] = 0, [y[xz]] = [yy] = 0 and [z[xy] = [zz] = 0 and the opposite
orders of the elements in the inner bracket (giving the negative of these answers). Hence,
the Jacobi identity immediately holds.

3. Let x =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, y =

(
0 0
1 0

)
be an ordered basis for sl(2; C).

Compute the matrices adx, adh and ady relative to this basis.

Solution

The basis is taken in the order x, h, y, so we may make the association

x 7→

 1
0
0

 , h 7→

 0
1
0

 , y 7→

 0
0
1

 .

Then, we evaluate:
[xh] = −2x, [xy] = h, [yh] = 2y.

This gives adx(h) = −2x and adx(y) = h, which, along with adx(x) = 0, tells us that

adx =

 0 −2 0
0 0 1
0 0 0

 .

Similarly, we find

adh =

 2 0 0
0 0 0
0 0 −2


and

ady =

 0 0 0
−1 0 0
0 2 0

 .

4. Find a Lie algebra of matrices that is isomorphic to the 2-dimensional Lie algebra L (with
basis x, y) determined by the bilinear anti-symmetric Lie bracket [xy] = x.

Solution

What we have here is an abstract specification of a Lie algebra: we are given the Lie
bracket only (we can easily verify that it satisfies the Jacobi identity, hence this indeed
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defines a Lie algebra). We want to see this as an algebra of matrices, with bracket being the
usual matrix commutator. A way of doing this is by considering the adjoint representaion,
which, as we know, gives us a homomorphism from L to some Lie algebra of matrices. At
the end, we just have to check that ad actually gives an isomorphism in the present case.
Evaluating the matrices adx and ady in the same way as in the previous question, with

x 7→

(
1
0

)
and y 7→

(
0
1

)
, we find

adx =

(
0 1
0 0

)
, ady =

(
1 0
0 0

)
.

One can explicitly check that [adx, ady] = adx with matrix commutator. Hence, the Lie
algebra of matrices that we find is{(

a b

0 0

)
: a, b ∈ C

}
.

Since this is 2-dimensional, the ad homomorphism is actually an isomorphism.

5. –

6. Let x ∈ gl(n; C) have n distinct eigenvalues a1, . . . , an. Prove that the eigenvalues of adx
are precisely the n2 scalars ai − aj , (1 ≤ i, j ≤ n), which of course need not be distinct.

Solution

If the eigenvalues of x are distinct, then for sure the matrix x can be diagonalised. Hence,
we can write

x = UDU−1 = U


a1 0 · · ·
0 a2 · · ·
...

...
. . .

U−1

for some invertible matrix U . Then, let us consider a basis of matrices in the linear space
gl(n; C), given by

fij = UeijU
−1

where eij are the n by n matrices with 0 everywhere, except for a 1 at the position i, j;
that is, (eij)kl = δikδjl. The fij form a basis, because we can always write any matrix
A as A =

∑
ij(A)ijeij , so we can always write any matrix B as B = UU−1BUU−1 =

U
∑

ij(U
−1BU)ijeijU−1 =

∑
ij(U

−1BU)ijfij . Also, it is clear that the fij are independent.
Then, we may evaluate the adjoint action of x on the basis elements fij :

adx(fij) = [x, fij ] = U [D, eij ]U−1 = (ai − aj)UeijU−1 = (ai − aj)fij .

That is, we have found a basis of matrices in gl(n; C) which diagonalises the action of adx.
Hence, the numbers ai − aj are the n2 eigenvalues of adx.
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7. Let s(n; C) denote the one-dimensional space of the scalar matrices (i.e. the scalar multi-
ples of the identity matrix) in gl(n; C). Prove that gl(n; C) = sl(n; C)⊕ s(n; C) as vector
spaces, and that both s(n; C) and sl(n; C) are ideals.

Solution

Take any matrix x in gl(n; C). We may always construct the new matrix x′ = x−Tr(x)1,
which is traceless, Tr(x′) = 0. Hence, x′ ∈ sl(n; C). Moreover, there is a unique element
y of s(n; C) such that x = x′ + y with x′ ∈ sl(n; C); it is the element y = Tr(x)1.
Hence, we have a 1-1 correspondence between sl(n; C) ⊕ s(n; C) and gl(n; C) as vector
space, which proves the first assertion. Finally, it is clear that s(n; C) commutes with
everything: in fact this is the center Z(gl(n; C)), because the only matrices that commute
with all n by n matrices are the scalar n by n matrices. Hence, it is an ideal (because the
center is always an ideal). Also, sl(n; C) is certainly a subalgebra (because commutator of
traceless matrices are always traceless): it is the commutator subalgebra of gl(n; C), i.e.
sl(n; C) = [gl(n; C), gl(n; C)] . But the commutator subalgebra is also an ideal, so sl(n; C)
is an ideal. In fact, here it’s quite easy to see that it is, because it clearly commutes with
all of s(n; C), i.e. [sl(n; C), s(n; C)] = 0.

Note that a Lie algebra that can be written as a direct sum of simple ideals plus abelian
ideals is called reductive. Hence, although gl(n; C) is neither simple nor semisimple, it is
in fact reductive, because sl(n; C) is simple and s(n; C) is abelian.

8. –

9. –

10. –

11. Verify that the commutator of two derivations of a Lie algebra is again a derivation,
whereas the ordinary product need not be.

Solution

Given a Lie algebra L with Lie bracket [··], a derivation D ∈ gl(L) is a linear map from
L to L with the property that D([xy]) = [D(x)y] + [xD(y)] for all x, y ∈ L. Suppose we
have two derivations, D1 and D2. Consider the commutator [D1, D2] = D1D2 − D2D1.
We need to check that this is still a derivation, so we need to apply this to [xy]. We have

[D1, D2]([xy]) = D1([D2(x)y] + [xD2(y)])−D2([D1(x)y] + [xD1(y)])

= [D1(D2(x))y] + [D2(x)D1(y)] + [D1(x)D2(y)] + [xD1(D2(y))]− (D1 ↔ D2)

= [[D1, D2](x)y] + [x[D1, D2](y)]

hence indeed [D1, D2] is a derivation. Note that for the ordinary product, we get

D1(D2([xy])) = [D1(D2(x))y] + [D2(x)D1(y)] + [D1(x)D2(y)] + [xD1(D2(y))]
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where we have the two spurious terms [D2(x)D1(y)]+[D1(x)D2(y)] which break the deriva-
tion property in general.

12. Let L be a Lie algebra and let x ∈ L. Prove that the subspace of L spanned by the
eigenvectors of adx is a Lie subalgebra.

Solution: The eigenvectors of adx are the elements in V = {y ∈ L | [xy] ∝ y}. We want
to look at the linear span of V (i.e. all linear combinations of elements of V ). This is a
subalgebra, because 1) it is a subspace, since we take the linear span, and 2) given any
y, y′ ∈ V , we have [x[yy′]] = [y[xy′]] + [[xy]y′] by the Jacobi identity, which is proportional
to [yy′], hence [yy′] ∈ V ; since the bracket is bilinear, the bracket also preserves the linear
span.

JE Humphreys, selected problems from sections 2-8

2.1 Prove that the set of all inner derivations of a Lie algebra L, i.e. derivations D of the
form D = adx for some x ∈ L, is an ideal of the Lie algebra of derivations Der L (see
section 1, question 11 for the fact that Der L is a Lie algebra, with Lie bracket the usual
commutator).

Solution

What we have to prove is that given any derivation D, and any inner derivation adx, the
commutator [D, adx] is of the form ady for some y ∈ L, i.e. is still an inner derivation.
In order to do so, we act on an arbitrary Lie algebra element z to see what happens. We
have

[D, adx](z) = D(adx(z))− adx(D(z))

= D([xz])− [xD(z)]

= [D(x)z] + [xD(z)]− [xD(z)]

= [D(x)z]

= ad(D(x))(z)

so that [D, adx] = ady for y = D(x).

2.2 Show that sl(n; C) is precisely the derived algebra of gl(n; C); the derived algebra of a Lie
algebra L is [LL] = span{[xy] : x, y ∈ L}, the set of all linear combinations of elements of
the form [xy].

Solution

Since the commutator of any two matrices has zero trace, Tr([A,B]) = Tr(AB − BA) =
Tr(AB − AB) = 0, then certainly [gl(n; C), gl(n; C)] ⊂ sl(n; C). To prove equality, let us
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consider the basis of matrices in gl(n; C) given by the matrices eij for i, j = 1, . . . , n (see
section 1, question 6). We want to see what we can get by taking all possible commutators
[eij , ei′j′ ]. We have

[eij , ei′j′ ] = δi′jeij′ − δij′ei′j .

Hence, with i′ = j and i > j′ we get a basis for the upper-triangular matrices (i.e. we get
all matrices with only a 1 somewhere in the upper triangular region), and with i′ = j and
i < j′ we get a basis for the lower-triangular matrices. In order to get all possible matrices
in sl(n; C), we now need to get all diagonal matrices with trace 0. Choosing i′ = j and
i = j′, we find that the commutator is eij′ − ei′j = eii − ei′i′ . Hence, we get all diagonal
matrices with a 1 at (i, i) and a −1 at (i′, i′), and 0 everywhere else. Keeping always the
−1, say, at the position (1, 1) in the matrix, we see that by taking linear combinations we
can obtain a matrix with any chosen number we want at the position (2, 2) up to (n, n),
and that at the position (1, 1) there is always the unique number necessary to make it
traceless. Hence, we do get all matrices in sl(n; C).

2.3 Prove that the center of gl(n; C) equals s(n; C) (the scalar multiples of 1). Prove that
sl(n; C) has center {0}.

Solution

We consider again the basis of matrices eij : i, j = 1, . . . n, and look for matrices x that
commute with all of them. We find

0 = ([eij , x])kl =
∑
m

((eij)kmxml − xkm(eij)ml) = δikxjl − δjlxki

so, taking i = k, we see that we need xjl = 0 for all j 6= l, and taking i = k, j = l, that
we need xjj − xkk = 0 for all j, k. Hence, all elements on the diagonal have to be equal,
which shows that we need an element of s(n; C).

For the case sl(n; C), the only difference is that the basis of matrices that are diagonal is
not eii but eii− ejj (see the previous question). This does not affect the arguments above,
because we can always choose i 6= j. But the only matrix in s(n; C) that is in sl(n; C) is
the zero matrix.

2.4 Show that (up to isomorphism) there is a unique Lie algebra L of dimension 3 whose
derived algebra [LL] has dimension 1 and lies in its center Z(L).

Solution

Consider a basis for L given by x, y, z. The derived subalgebra is composed of all elements
of the form a[xy] + b[zx] + c[yz] for any a, b, c ∈ C. We want this to be of dimension 1, so
[xy] ∝ [zx] ∝ [yz]. That is, there is a triplet (u, v, w) ∈ C3, and complex numbers α, β,
such that [xy] = ux + vy + wz, [zx] = α(ux + vy + wz), [yz] = β(ux + vy + wz) (here,
we chose to make sure that at least [xy] is non-zero; one can always choose a basis in this
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way). But also, the element ux+ vy + wz must lie in the center, so [x (ux+ vy + wz)] =
[y (ux+ vy + wz)] = [z (ux+ vy + wz)] = 0. This tells us that

v[xy] + w[xz] = u[yx] + w[yz] = u[zx] + v[zy] = 0

hence
v[xy]− wα[xy] = −u[xy] + wβ[xy] = −uα[xy]− vβ[xy] = 0.

This gives us the equations:

v − wα = 0, −u+ wβ = 0, −uα− vβ = 0.

So we have v = wα, u = wβ and wαβ = 0. If w = 0, then also u = 0 and v = 0, so that
[LL] is in fact zero-dimensional, which we do not want. Hence, w 6= 0, and α = 0 or β = 0.
By exchanging x↔ −y, we see that the commutators are not changed except for α↔ β,
so we can choose β = 0 and α 6= 0 by an appropriate choice of basis. Hence, we find

v = wα, u = 0, β = 0

with w,α arbitrary but non-zero. This gives us

[xy] = w(αy + z), [zx] = wα(αy + z), [yz] = 0.

Since w,α are nonzero, we can always write x = wαx′ and y = y′/α, and we find

[x′y′] = (y′ + z), [zx′] = (y + z), [y′z] = 0.

This defines the unique (up to isomorphism) algebra that we wanted.

2.5 Suppose that the dimension of a Lie algebra L is 3, and that L = [LL]. Prove that L must
be simple. Recover the simplicity of sl(2; C).

Solution

Let us look for a proper ideal I in L. It can only have dimension 1 or 2. Suppose I
has dimension 1, I = Cx for some x ∈ L. Then, taking two other basis elements in L

to be y, z, we must have [xy] ∝ x and [xz] ∝ x because I is an ideal. But then, [LL]
is only at most two-dimensional, because [LL] = C[xy] + C[yz] + C[zx] = Cx + C[yz],
so we cannot have L = [LL], a contradiction. Hence, the proper ideal I, if it exists,
must be of dimension 2. Suppose it is spanned by basis elements x, y, i.e. I = Cx + Cy.
With z a basis element outside I, we have [xy] ∈ I, [xz] ∈ I and [zy] ∈ I, so that
[LL] = C[xy] + C[yz] + C[zx] = I. Again, we see that [LL] then has dimension 2, so we
cannot have L = [LL], a contradiction. Hence, there is no proper ideal. Additionally,
since [LL] = L, then L is not abelian. Hence, L is simple. An analysis similar to that of
question 2.2 above shows that sl(2,C) = [sl(2,C), sl(2,C)], and we know that sl(2,C) has
dimension 3. Hence, sl(2,C) is simple.
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3.1 (part of it) In general, the derived series of a Lie algebra L is (L0, L1, L2, . . .) with

L0 = L, L1 = [L0L0], L2 = [L1L1], . . . , Ln+1 = [LnLn], . . .

Let I be an ideal of a Lie algebra L. Prove that each member In of the derived series of
I is also an ideal of L.

Solution

By assumption, [IL] ⊂ I. This shows the statement for the member I0. Let us proceed by
induction: assume that In is an ideal of L, i.e. that [InL] ⊂ In. Consider any x, y ∈ In,
so that [xy] ∈ In+1. Consider any z ∈ L. Then, by the Jacobi identity,

[[xy]z] = [[xz]y] + [[zy]x].

Since [xz] ∈ In and [zy] ∈ In by the induction assumption, we have that [[xy]z] ∈ [InIn] =
In+1. Since any element in In+1 is a linear combination of elements of the form [xy] for
x, y ∈ In, this shows that [In+1L] ⊂ In+1. Hence, In+1 is an ideal of L. This completes
the induction.

3.4 (part of it) Prove that L is solvable if and only if adL is solvable.

Solution

Consider the derived series of L (see question 3.1). By the homomorphism property of ad,
we have [adLn, adLn] = ad[LnLn] = adLn+1. Hence, by an easy induction, the derived
series of adL is given by the members (adL)n = adLn for n = 0, 1, 2, . . .. If L is solvable,
then Lm = 0 for some m, hence (adL)m = adLm = 0, so that adL is solvable as well. On
the other hand, is adL is solvable, then (adL)m = 0 for some m, hence adLm = 0, so that
Lm is in the center of L (it commutes with everything). Then, clearly Lm+1 = [LmLm] = 0,
hence L is solvable as well.

3.5 (part of it) Prove that the nonabelian 2-dimensional Lie algebra of section 1, question 4 is solvable.
Do the same for the Lie algebra of section 1, question 2.

Solution

First, we consider the 2-dimensional Lie algebra L determined by [xy] = x. Clearly, the
derived subalgebra L1 = [LL] is Cx, which is one-dimensional hence abelian, so that
L2 = [L1L1] = 0. Hence, L is solvable.

Second, we consider the 3-dimensional Lie algebra L determined by [xy] = z, [xz] = y,
[yz] = 0. Clearly, the derived subalgenra L1 = [LL] is Cy + Cz, which is abelian thanks
to [yz] = 0, so that L2 = [L1L1] = 0. Hence, L is solvable.

5.3 Let L be the 2-dimensional Lie algebra of section 1, question 4, which is solvable (see 3.5).
Prove that L has non-trivial (i.e. not identically zero) Killing form.

Solution
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We may just calculate the Killing form explicitly. We have [xy] = x, so, with x 7→

(
1
0

)

and y 7→

(
0
1

)
, we find

adx =

(
0 1
0 0

)
, ady =

(
−1 0
0 0

)
.

Hence, the Killing form is determined by

κ(x, x) = Tr

(
0 0
0 0

)
= 0, κ(x, y) = Tr

(
0 0
0 0

)
= 0, κ(y, y) = Tr

(
1 0
0 0

)
= 1.

Hence, there is one element that is non-zero.

5.4 Let L be the 3-dimensional Lie algebra of section 1, question 2. Compute the radical of
its Killing form.

Solution

The Lie algebra is determined by [xy] = z, [xz] = y, [yz] = 0. We first compute the adjoint

representation, with x 7→

 1
0
0

, y 7→

 0
1
0

, and z 7→

 0
0
1

. We find

adx =

 0 0 0
0 0 1
0 1 0

 , ady =

 0 0 0
0 0 0
−1 0 0

 , adz =

 0 0 0
−1 0 0
0 0 0

 .

Hence, with u = ax + by + cz for some complex numbers a, b, c, and similarly u′ = a′x +
b′y + c′z, we ask for the set of a, b, c such that κ(u, u′) = 0 for all a′, b′, c′. We find

κ(u, u′) = Tr

 0 0 0
−c 0 a

−b a 0


 0 0 0
−c′ 0 a′

−b′ a′ 0

 = Tr

 0 0 0
−ab′ aa′ 0
−ac′ 0 aa′

 = 2aa′.

Then, we need a = 0, so that the radical is the subspace Cy + Cz (which is an ideal, as it
should).

5.5 Compute the basis of sl(2; C) that is dual to the standard basis (see section 1, question 3)
relative to the Killing form.

Solution

Using the expressions for adx, ady and adh obtained in section 1, question 3, we can
compute the Killing form. It is simplest to express it at a matrix: we say κ(u, v) = uTKv

where u, v ∈ L are seen as column vectors as usual. We find

K =

 0 0 4
0 8 0
4 0 0

 .
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In order to find the dual basis, which we will denote by x̃, ỹ and z̃, we want to find a matrix
M such that KM = 1. Then, we will simply define x̃ = Mx, z̃ = Mz and z̃ = Mz, and
we will immediately see that xTKx̃ = xTKMx = xtx = 1, xTKỹ = xTKMy = xT y = 0,
etc. The matrix M is simply M = K−1, and since K has non-zero determinant (i.e. the
form κ is non-degenerate), we can compute it:

M =
1
8

 0 0 2
0 1 0
2 0 0

 .

Hence, the dual basis is
x̃ = y/4, h̃ = h/8, ỹ = x/4.

6.1 (simplified) Using the standard basis for sl(2; C) (see section 1, question 3), write down the Casimir
element of the adjoint representation (see question 5.5). So the same for the usual 2-
dimensional representation of sl(2; C).

Solution

Given a basis xi and its corresponding dual basis yi according to the trace form beta(x, y) =
Tr(φ(x)φ(y)) of a representation φ, the Casimir element is Cφ =

∑
i φ(xi)φ(yi). Here, we

consider the adjoint representation φ = ad, so the trace form is the Killin form. We
computed the dual basis in 5.5. Hence, we can write

Cκ = adx adx̃+ ady adỹ + adz adz̃ =
1
4
adx ady +

1
4
ady adx+

1
8
(adh)2.

Explicitly, as a matrix, this is simply

Cκ = 1

which is in agreement with the general formula Cφ = dim(L)/dim(V )1 for an irreducible
representation space V . Note that here, the adjoint representation, which always has the
same dimension as L itself, is irreducible because L is simple.

For the 2-dimensional representation φ, we have that φ(x), φ(y) and φ(z) are directly the
matrices displayed in section 1, question 3 (first line). We must compute the dual basis
according to the trace form. First, the form is β(x, y) = xTBy with

B =

 0 0 1
0 2 0
1 0 0


so that the dual basis is

x̃ = y, h̃ = h/2, ỹ = x.

Working out again the Casimir, we find

Cφ = φ(x)φ(y) + φ(y)φ(x) +
1
2
φ(h)φ(h) =

3
2
1

which is again in agreement with Cφ = dim(L)/dim(V )1 where now V has dimension 2.
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6.4 Use Weyl’s theorem to give a proof that for L semisimple, adL = Der(L), that is, all
derivations of L are of the form ady0 for some y0 ∈ L. Hint: for any D ∈ Der(L), make
the direct sum C ⊕ L into a representation space for L (i.e an L-module) via the rule
φD(x)(a, y) = (0, aD(x) + [xy]).

Solution

First, let us check that C⊕ L is indeed a representation space. We have

[φD(x), φD(y)](a, z) = φD(x)(0, aD(y) + [yz])− φD(y)(0, aD(x) + [xz])

= (0, a[xD(y)] + [x[yz]])− (0, a[yD(x)] + [y[xz]]).

But also
φD([xy])(a, z) = (0, aD([xy]) + [[xy]z]).

The first member is 0, so agree. The last terms in the second member also agree by
the Jacobi identity, [x[yz]] − [y[xz]] = [[xy]z]. The first terms in the second member
also agree for any a by the derivation property, D([xy]) = [xD(y)] + [D(x)y]. Hence,
we indeed have [φD(x), φD(y)] = φD([xy]). According to Weyl’s theorem, any finite-
dimensional representation of a semisimple Lie algebra is completely reducible. Here we
do have a finite-dimensional representation. We also clearly have a sub-representation,
if we restrict to the space {0} ⊕ L = {(0, z) : z ∈ L} (just set a = 0 above): this is
certainly an invariant subspace. Since the representation must be completely reducible,
then there must be a complement of this subspace that is also an invariant subspace. The
complement is certainly one-dimensional, so there must exist a y0 ∈ L (that depends on
the representation φD, hence on D) such that S := {(a, ay0) : a ∈ C} is invariant (this is
a complement, because the only element in common with {0} ⊕ L is (0, 0)). But for S to
be invariant, i.e. φD(x)S ∈ S ∀ x ∈ L, we need

φD(x)(a, ay0) = (0, aD(x) + a[xy0]) ∈ S ⇒ D(x) + [xy0] = 0.

Hence, we find that D(x) = [y0x] = ady0(x), which shows the statement.

6.6 Let L be a simple Lie algebra. Let β(x, y) and γ(x, y) be two symmetric associative bilinear
forms on L. If β and γ are nondegenerate, prove that β and γ are proportional.

Solution

First, the properties of β and γ are symmetry (β(x, y) = β(y, x)), associativity (β([xy], z) =
β(x, [yz])) and bilinearity (and the same for γ). Let us use the notation β(x, y) = xTBy

and γ(x, y) = xTCy, with the column-vector notation for elements of L (see, e.g., question
5.5). Symmetry means BT = B and CT = C, and associativity means −(adx)TB = Badx
and −(adx)TC = Cadx for all x ∈ L. Nondegeneracy means that both B and C are
invertible. Hence, we have

B adxB−1 = C adxC−1 ∀ x ∈ L.
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Then, let us consider the adjoint representation. Since L has no proper ideals, then there
is no invariant subspace of L under adL, hence the adjoint representation is irreducible.
Now consider the equation above. It gives C−1B adx = adxC−1B for all x ∈ L. Using
Shur’s lemma, this means that C−1B = 1. This proves the statement.

7.3 Verify that the formula

φ(h)vi = (λ− 2i)vi

φ(y)vi = (i+ 1)vi+1

φ(x)vi = (λ− i+ 1)vi−1

define a representation of sl(2; C).

7.4 (have a look – but not essential)

8.4 Prove that each Cartan subalgebra of sl(2; C) is one dimensional.

Solution

All we have to show is that there is no subalgebra of sl(2; C) of dimension higher than 1
that is abelian. Since sl(2; C) has dimension 3, and is nonabelian, we only need to look for
a subalgebra of dimension 2. Suppose the subalgebra contains both x and y. Then it must
contain [xy] = h, so it must have dimension 3, a contradiction. Hence, the subalgebra must
contain only a one-dimensional subspace of the 2-dimensional space spanned by x and y.
Suppose this is spanned by ax + by. The subalgebra is then spanned by ax + by and h.
The commutator is [h(ax+ by)] = 2ax− 2by. This must be proportional to ax+ by, hence
we must have a = 0 or b = 0. But the subalgebras Ch+ Cx and Ch+ Cy are not abelian,
because [hx] = 2x and [hy] = −2y. Hence, there is no 2-dimensional abelian subalgebra.

Some additional Lie algebra exercises

1. Consider sl(2; C) and the Cartan subalgebra

H =

{(
0 a

a 0

)
: a ∈ C

}
.

Find the roots and the corresponding root space decomposition.

Solution

As an extra, let us first check that this is indeed a Cartan subalgebra. It is maximal
because any bigger subalgebra will be the whole of sl(2; C), hence will not be abelian. So
we just have to check that it is ad-diagonalisable. We consider as usual the basis x, y and
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h (see section 1, question 3). Note that H = C(x + y). In the adjoint representation, we
have

ad(x+ y) =

 0 −2 0
−1 0 1
0 2 0

 .

We have to check that this is diagonalisable. The eigenvalues are the roots of the charac-
teristic polynomial,

−λ(λ2 − 2) + 2λ = λ(4− λ2)

so that the roots of the polynomial are λ = 0 and λ = ±2. Since they are distinct, the
matrix is diagonalisable. By the usual linear algebra techniques, we can calculate the
corresponding eigenvectors:

x2 =

 −1
1
1

 = y − x+ h, x−2 =

 −1
−1
1

 = y − x− h, x0 =

 1
0
1

 = x+ y.

Hence, we find two roots, α2 and α−2, with

α2(x+ y) = 2, α−2(x+ y) = −2.

So, the root space decomposition relative to H = C(x+ y) is simply

L = C(x+ y)⊕ C(y − x+ h)⊕ C(y − x− h).

2. Prove that the derived subalgebra [LL] of a Lie algebra L is an ideal. Recall that the
derived subalgebra of a Lie algebra L is [LL] = span{[xy] : x, y ∈ L}, the set of all linear
combinations of elements of the form [xy].

Solution

Consider any x ∈ [LL] and any z ∈ L. We have x =
∑

i[xiyi] by the definition of the
derived subalgebra. Certainly, [z[xiyi]] ∈ [LL], hence [zx] ∈ [LL]. Hence, [LL] is an ideal.

3. Prove that the center Z(L) = {x ∈ L : [xy] = 0 ∀ y ∈ L} is an ideal.

Solution

Let x ∈ Z(L) and z ∈ L. We have [zx] = 0 ∈ Z(L), hence Z(L) is an ideal.

4. Prove that the radical radβ = {x ∈ L : β(x, y) = 0 ∀ y ∈ L} of any bilinear symmetric
associative form β(x, y) is an ideal of L.

Solution—

Properties: symmetric means β(x, y) = β(y, x) and associative means β([xz], y) = β(x, [zy]).
Then, let x ∈ radβ and y, z ∈ L. We have β([xz], y) = β(x, [zy]) = 0 by definition of radβ.
Hence, [xz] ∈ radβ, so radβ is an ideal.
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5. Let I be an ideal of L. Define I⊥ = {x ∈ L : κ(x, y) = 0 ∀ y ∈ I} where κ is the Killing
form, κ(x, y) = Tr(adx ady). Show that I⊥ is also an ideal of L.

Solution

Let x ∈ I⊥, y ∈ I and z ∈ L. Then κ([xz], y) = κ(x, [zy]) = 0 because [zy] ∈ I. Hence
[xz] ∈ I⊥, so that I⊥ is an ideal.

6. Given a derivation D on L, prove that the bilinear form α(x, y) = κ(x,D(y)), where κ is
the Killing form κ(x, y) = Tr(adx ady), is anti-symmetric, α(x, y) = −α(y, x).

Solution

The Killing form is κ(x, y) = Tr(adxady). Consider κ(x,D(y)). Since D is a derivation,
it satisfies D([xy]) = [D(x)y] + [xD(y)]. Note that

ad(D(y))(z) = [D(y)z] = D([yz])− [yD(z)] = D(ady(z))− ady(D(z)) = [D, ady](z).

As operators on L, this equation means ad(D(y)) = [D, ady]. Hence, κ(x,D(y)) =
Tr(adx [D, ady]) = Tr([adx,D] ady) using cyclicity of the trace. But then,

[adx,D] = −[D, adx] = −ad(D(x))

hence we find κ(x,D(y)) = −κ(D(x), y). Using symmetry of the Killing form, this is
κ(x,D(y)) = −κ(y,D(x)), which is anti-symmmetry of α(x, y) = κ(x,D(y)).
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