
Introduction to integrable quantum field theory

Benjamin Doyon

Spring term 2008

Department of Mathematical Sciences

Durham University

1 Introduction

1.1 Integrability

The subject of integrability is, first, both modern and old, and second, sometimes very precise and
sometimes quite intuitive. I will talk essentially about the modern intuitive part of it, integrable Quantum
Feld Theory (QFT), because it is, to my opinion, the most interesting physically, and also because
mathematically it offers the opportunity of a more precise understanding of QFT.

But first, what is integrability?

The very concept of integrability was introduced in 1855 by Liouville, in classical mechanics with
finitely many degrees of freedom. At its basis is the search for exact solutions. He defined an integrable
system as one that possesses as many independent conserved charges in involution as there are degrees
of freedom. A conserved charge Qm is a quantity, a function of the canonical coordinates qi, pi, that
Poisson-commute with the Hamiltonian (we consider here Hamiltonians and conserved charges without
explicit time dependence):

{H,Qm} = 0 .

Hence they are time-independent under the dynamics. Conserved charges in involution have an additional
property: they Poisson-commute with one another:

{Qm, Qn} = 0 .

This means that there are many symmetries: making a change of coordinates

qi 7→ qi + η{Qm, qi}+
η2

2
{Qm, {Qm, qi}}+ . . . ,

similarly for pi, does not change the dynamics. Here η is the parameter associated to the symmetry. For
instance, if the symmetry is a rotation, then η is an angle. Thanks to involution, all the symmetries are in
agreement with each other: you can go in the Qm direction then the Qn direction, or vice versa, and you
get the same result. Hence, these conserved charges constrain the dynamics a lot – the system must lie
on an “hyper-torus” in phase space. This hyper-torus tells us that there is a good system of coordinates
– the action-angle coordinates – where the dynamics is much simpler. In this system of coordinates, we
can solve by quadrature, that is, by only doing integrals.

Now, this has limited interest in modern physics, and we would like to generalize to other systems.
This is where integrability becomes more subtle.
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• First, what happens in classical field theory? There are infinitely many degrees of freedom, so we
would need infinitely many conserved charges, but how big an infinity? I don’t think there is yet
a clear answer to this question. Also, solving by quadrature just does not work anymore, we still
have infinitely many integrals to do! Fortunately, a deeper understanding has been gained in the
sixties: the concept of Lax pairs takes the principal role, and the inverse scattering method provides
a solution method, but things become, at first sight, less intuitive.

• The problem may seem deeper with generalization to quantum mechanics: there, the Hamiltonian
is a matrix, say 2N by 2N in a chain of interacting spin-1/2 degrees of freedom. But we can always
in principle diagonalize it so there is always 2N other matrices that commute with it and with
each other; nevertheless, we cannot always find exact solutions... What do we mean by “enough
conserved charges”? The ideas of integrability in classical mechanics and field theory give a good
intuition, and there are here many powerful techniques developed (Bethe ansatz, quantum inverse
scattering method), but, to my opinion, there is no clear fundamental principle of integrability yet.

Now, quantize a classical field theory, or take the scaling limit of a quantum chain, and you get a
QFT. Both problems mentioned above about the conserved charges seem to be present, and although
the techniques mentionned can be generalized, they become quite involved. Happily, in relativistic QFT,
there are new structures, so that new techniques can be developed and the theory of integrability can
be based only on the effect of conserved charges from fundamental principles of QFT, without explicit
reference to the concept of action-angle variable.

And what is a QFT?

1.2 Quantum theory of fields

There are in fact many ways of understanding QFT, and they are all quite useful. The first one, from
which QFT takes its name, is as a quantum version of a classical field theory. Imagine, for instance, a
classical string, along the horizontal, with oscillations only in the vertical direction. We usually think of it
as many particles that can move in the vertical direction, connected to each other if they are neighbours
with a spring. In fact, it will be quite useful for us to have a slightly generalised situation, with a string
where each particle is also connected to a fixed spring that wants to keep the particle at some height 0.
When we take the distance between the particles very small, we get an equation for a continuous height
function φ(x). This is a classical field: it has a value (a degree of freedom) at every point x in space (one-
dimensional). Under the dynamics it is also time dependent. Naturally, there is a momentum density
π(x) associated to it, with canonical Poisson relations {φ(x), π(x′)} = δ(x − x′), and a Hamiltonian,
which for the string is

H =
1
2

∫
dx

[
π2(x) +

(
∂φ(x)
∂x

)2

+m2φ2(x)

]
. (1.1)

The parameter m is what sets the force of the fixed springs. The term in π2 is the kinetic energy, and the
other terms are the potential energies due to inter-particle springs and fixed springs. This Hamiltonian
gives the usual π(x) = ∂φ(x)

∂t (here I use partial derivatives because of the x dependence), as well as the
string equation with unit wave velocity, ∂2φ

∂t2 = ∂2φ
∂x2 −m2φ (note that with velocity set to 1, x and t have

the same units, and the parameter m has units of inverse distance).
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Now if we quantise each particle with the usual quantisation rules, then take the continuum limit, the
result is that the classical fields become operators φ̂(x), π̂(x), with commutation relations [φ̂(x), π̂(x′)] =
iδ(x−x′) (here and below, I set ~ to 1; this is just an appropriate choice of mass unit). The Hamiltonian
is just as above, but what are the energy eigenstates? What is the Hilbert space?

We know how to solve the string problem in classical mechanics: by Fourier transform. The linearity of
the Fourier transform goes quite well with the linearity of the algebra of operators in quantum mechanics,
and this saves us. Usually one introduces Fourier coefficients A(p), with the variable p dual to x under
Fourier transform. I will rather use a different variable: θ, defined by pθ = m sinh θ. This is the rapidity
in relativity, where m is the mass of the relativistic particle and Eθ = m cosh θ is its energy, and gives a
first flavor of relativity to our non-relativistic quantum string. But for now, it’s just a choice of variable.
Hence we define operators Â(θ), with their hermitian conjugate Â†(θ), by saying that they are Fourier
coefficients of the operator-fields φ̂(x), π̂(x):

φ̂(x) =
∫

dθ

4π

(
eipθxÂ(θ) + e−ipθxÂ†(θ)

)
, π̂(x) = −i

∫
dθ

4π
Eθ

(
eipθxÂ(θ)− e−ipθxÂ†(θ)

)
. (1.2)

The canonical commutation relations give

[Â(θ), Â†(θ′)] = 4πδ(θ − θ′) , [Â(θ), Â(θ′)] = [Â†(θ), Â†(θ′)] = 0 (1.3)

and the Hamiltonian is
Ĥ =

1
8π

∫
dθEθ

(
Â†(θ)Â(θ) + Â(θ)Â†(θ)

)
. (1.4)

Note that the modes Â(θ) are very much like those of a harmonic oscillator for each individual θ, and the
Hamiltonian is a sum of that of such harmonic oscillators, with frequencies Eθ. Like in classical mechanics,
this gives a simple expression for the time-evolved fields (in the Heisenberg picture), for instance:

eiHtφ̂(x)e−iHt = φ̂(x, t) =
∫

dθ

4π

(
eipθx−iEθ Â(θ) + e−ipθx+iEθ Â†(θ)

)
. (1.5)

It is easy to check that this Heisenberg-picture field satisfies exactly the equation of motion of the classical
field: this is a consequence of Ehrenfest theorem, and the fact that the potential energy is quadratic in
the field.

Now all this is useful because the Fock space for the algebra (1.3), which is a module for canonical
commutation relations like that, gives a construction of eigenstates of the Hamiltonain. It goes like this:
first define a state |vac〉 by the fact that

Â(θ)|vac〉 = 0 (1.6)

for all θ. Then construct a basis of states |θ1, . . . , θn〉 for θ1 > . . . > θn by

|θ1, . . . , θn〉 = Â†(θ1) · · · Â†(θn)|vac〉 (1.7)

(we need an ordering of the rapidities to have a basis, with independent states, because the Â†(θ)
commute with each other). Using the algebra relations (1.3), the action of any operator Â(θ) or Â†(θ)
can be evaluated on any of these states. Hence this is a module. The Hilbert space structure is given by
the Hermitian structure, along with 〈vac|vac〉 = 1. Using the mode algebra (1.3), this gives

〈θ′1, . . . , θ′n′ |θ1, . . . , θn〉 = δn,n′

n∏
j=1

δ(θj − θ′j) (1.8)
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for θ1 > . . . > θn and θ′1 > . . . > θ′n′ . This basis is a basis of eigenstates of the Hamiltonian, which we
can write as Ĥ =

∫
dθÂ†(θ)Â(θ) + (1/2)δ(0):

Ĥ|θ1, . . . , θn〉 =

1
2
δ(0) +

n∑
j=1

m cosh θj

 |θ1, . . . , θn〉 . (1.9)

But there is a problem: the energies are infinite! This means that really, the lower bound of the Hamil-
tonian is not well defined. It is simple to correct: just substract an infinite constant to the Hamiltonian,
forming the renormalised Hamiltonian. Nothing of the dynamics is changed, and the lowest energy is
now 0.

This is, in fact, a fundamental problem of quantum field theory: the usual continuum limit of a
classical field is not a well-defined quantum mechanical system, we need to take this limit in a very
particular way, substracting infinities. In the case of the string, it is quite simple, but if we had consider
corrections to the spring-like interaction between the particles of the string, the quantisaton process would
have been much more complicated: this needs a full-fledged renormalisation.

In fact, this problem can be understood in Feynman’s formulation of quantum mechanics using path
integrals. In this formulation, the probability amplitude for a particle to go from a point x′ at time t′ up
to a point x′′ at time t′′, 〈x′′|e−iĤ(t′′−t′)|x′〉 in the usual notation, is given by∫

x(t′)=x′, x(t′′)=x′′
[dx(t)]e−iS(x,dx/dt) (1.10)

where S(x, dx/dt) is the classical action, and where we integrate over all possible paths x(t) with appro-
priate initial and final conditions. Hence it looks like the particles can take almost any path. However,
the classical one is the most favorable because the phase e−iS(x,dx/dt) oscillates wildly, phases of nearby
trajectories mostly cancelling each other, except at the minimum of the classical action, where it oscillates
least. Yet, trajectories with wild turns will occur, in agreement with uncertainty principles, a bit like a
Brownian motion. But if all particles of a string are subject to such a behaviour, there will be strong
distortions, and our continuum, spring-like approximation is no longer strictly valid: it looks like we need
all possible corrections.

A final remark for this sub-section: the idea behind the construction of the Hilbert space for the string
is that it must 1) be a module for the canonical commutation relations for φ̂(x) and π̂(x), and 2) be such
that the Hamiltonian (appropriately renormalised!) is bounded from below. Hence, it is not really the
space whose basis is all possible classical field configurations φ(x), but rather the Fock space above; there
is a subtle difference, because these are infinite-dimensional spaces.

1.3 Relativistic quantum particles

Although we were talking about the quantisation of a non-relativistic string, there seemed to be some
structures of special relativity coming out. How far can we make the correspondence?

Let us now consider the quantisation of a relativistic particle. What do we expect from our knowledge
of non-relativistic quantum mechanics? First, in relativity, energy and mass can be exchanged, so that
there can be creation of particles. Hence, we should not consider just one particle, but any number of
particles, so that the Hilbert space should be a direct sum of sectors with various particle numbers. Let
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us consider free particles (really, then there is no particle creation, but let’s keep all particle numbers).
Generalising what happens in non-relativistic quantum mechanics, we expect that for n identical particles,
the state will be described by the n energies, or momenta, or better rapidities, of the particles. But since
particles are identical, exchanging the rapidities of two particles does not change the state. Hence we
expect the Hilbert space to have a basis of states like

|θ1, . . . , θn〉 , θ1 > . . . > θn . (1.11)

These states should have the inner product (1.8), which is relativistic invariant, that is, invariant under
θ 7→ θ+β for all rapidities involved. On these states, the energy is

∑n
j=1m cosh θj , and the momentum is∑n

j=1m sinh θj . This is the same Hilbert space as for the quantum non-relativistic string, and the same
energy, hence the same Hamiltonian, as the renormalised one.

Now we can also consider the (supposed) state |x〉, for instance, that represents one particle at position
x (we will see that a relativistic particle cannot be exactly localised). Since we have a Hilbert space with
all numbers of particles, we can construct a Hermitian operator, say φ̂(x), that creates a particle at
position x out of the vacuum: |x〉 = φ̂(x)|vac〉. Let us look at the wave function of the one-particle state
|θ〉, that is, ψ(x) = 〈x|θ〉 = 〈vac|φ̂(x)|θ〉. Remember that in non-relativistic quantum mechanics, the
wave function of a free particle is an eigenfunction of the momentum operator, P̂ = −i∂/∂x (acting on
wave functions). Here also momenum is conserved, so we should have P̂ψ(x) = m sinh θψ(x). This is in
agreement with the matrix element 〈vac|φ̂(x)|θ〉 of the quantum height field φ̂(x):

〈vac|φ̂(x)|θ〉 = eipθx . (1.12)

We can look at the wave function of the time-evolved state, ψ(x, t) = 〈x|e−iHt|θ〉 = 〈vac|φ̂(x, t)|θ〉
where we used the Heisenberg picture. In non-relativistic quantum mechanics, the wave function obeys
the Schroedinger equation, which is just i∂/∂t = P̂ 2/(2m). Similarly, we could impose the relativistic
dispersion relation, understanding i∂/∂t as the energy: (i∂/∂t)2 − P̂ 2 = m2. This leads to the Klein-
Gordon equation:

∂2

∂t2
ψ(x, t) =

∂2

∂x2
ψ(x, t)−m2ψ(x, t) . (1.13)

This is exactly the wave equation for the string above, indeed satisfied by the matrix element 〈vac|φ̂(x, t)|θ〉
of the time-evolved height field thanks to Ehrenfest’s theorem. In order to fully understand the meaning
of φ̂(x, t) in the relativistic particle picture, consider the state φ̂(x, t)|vac〉 and evolve it for a time t:
e−iHtφ̂(x, t)|vac〉 = φ̂(x)|vac〉 = |x〉; this is a state with a particle at x. Hence, the state φ̂(x, t)|vac〉 is a
state at time zero such that when we reach time t starting from it, we get a particle at position x. That
is, we interpret φ̂(x, t) as creating a particle at position x and time t out of the vacuum.

Note also that φ̂(x, t)|vac〉 does not overlap with any state |θ1, . . . , θn〉 with n 6= 1. That is, it is truely
a one-particle state only.

Finally, the most important characteristic of special relativity is relativistic, or Lorentz, invariance.
In terms of the rapidity θ, a relativistic boost is just a shift θ 7→ θ + β. This should correspond to
(x, t) 7→ (x coshβ − t sinhβ, t coshβ − x sinhβ). Since time-evoled the wave function is

ψθ(x, t) = 〈vac|φ̂(x, t)|θ〉 = eipθx−iEθt , (1.14)

we can see that indeed ψθ+β(x, t) = ψθ(x coshβ − t sinhβ, t coshβ − x sinhβ).
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Hence we have found a direct relation between quantum relativistic particles and the quantum non-
relativistic string:

• They have the same Hilbert space, with a quantum string mode of frequency Eθ = m cosh θ and
wave number pθ = m sinh θ corresponding to a particle of rapidity θ;

• The energy of the relativistic particles is the renormalised energy of the quantum string;

• The Heisenberg-picture time-evolved height operator φ̂(x, t) creates a particle at position x and
time t out of the vacuum.

Consider now the quantity 〈vac|φ̂(x′)φ̂(x)|vac〉. It has very different interpretations: in the string
picture, it is the average of a product of the height observable at different points (which is why this
quantity is called a correlation function), and in the relativistic picture, it is the probability amplitude
for a particle at x′ to be present in a state with a particle at x. Interestingly, this probability amplitude
is no zero for x 6= x′! That is, due to relativistic invariance, in a state with “a particle at x” there is in
fact a probability of finding the particle at x′ 6= x. However, this probability decays exponentially fast
as |x′ − x| becomes large, like e−m|x−x′|; we just cannot completely “localise” a particle.

But we do have some concept of locality: we know that [φ̂(x), φ̂(x′)] = 0 for x 6= x′. This is just saying
that the height observables at different positions are independent observables, as it should be, and it holds
also for (x, t) and (x′, t′) at space-like distances, (x−x′)2 > (t− t′)2, thanks to Lorentz invariance. In the
relativistic particle picture, it is saying that the probability amplitude for the propagation of a particle
from a point of space-time to another at a space-like distance, is exactly cancelled by the probability
amplitude for the propagation of the associated anti-particle. This does not hold if the distance is time-
like. This is the concept of quantum locality in relativistic quantum mechanics. This concept of locality
is satisfying in the relativistic particle viewpoint, because any physical process that will create a particle
out of the vacuum must also create an anti-particle. The picture here is that of the Dirac sea: the vacuum
is a sea filled up to some level, and creating a particle means taking an “element” of the sea above the sea
level. This leaves a hole, that will propagate like a relativistic particle as well: the anti-particle. Then,
the quantum correlation between such physical processes at space-like points will be zero, because the
particle and anti-particle have cancelling amplitudes.

In relation to that, we note that the field φ̂(x) not only create a particle, but also destroys a particle
(which doesn’t do anything to vacuum, but does something to states with more particles). In fact, the
more precise statement is that it destroys the associated anti-particle, but in our simple example, the
particle is its own anti-particle (there is no electric charge to invert, for instance, as there would be in
the case of the electron and positron). This is also general: fields that are quantum mechanically local
must both create a particle and destroy an anti-particle.

Finally, this relation between the quantum string and quantum relativistic particles wouldn’t be so
useful if we were only to look at free particles. But for interacting relativistic particles, the only clear
quantum mechanics theory is through this relation: the interaction is implemented by adding corrections
to the quadratic potential in the string (or in other “free” quantum field theory models).
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1.4 Scaling limits and correlation functions

With interactions, however, QFT has problems, as we said above, and needs renormalisation. The deepest
understanding of the renormalisation procedure and of quantum field theory in general is through the
scaling limit of quantum systems with many degrees of freedom. That is, we first quantise the particles
of the string, or other degrees of freedom, then we think about how to take the continuum limit. Let me
take now a different example than the string, to make things clearer. Suppose we have a chain of quantum
degrees of freedom. For instance, at each site of the chain, we have a two-dimensional quantum space
(as it happens if this is a spin-1/2 degree of freedom, like the spin of the electron), and the full quantum
space is the tensor product of all such two-dimensional spaces, for all sites of the chain. This describes
all the possible states of the system. In the so-called “XXZ” Heisenberg spin chain, the Hamiltonian
describes magnetic interactions between sites that are nearest neighbours:

H = J
∑

j

(
σx

j σ
x
j+1 + σy

j σ
y
j+1 + ∆σz

jσ
z
j+1

)
for J > 0, the magnetic coupling. Here σx,y,z

j are Pauli matrices associated to independent sites j ∈ Z:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.15)

The paremeter ∆ is an anisotropy: the z direction of the magnetic interaction is different.

Many of the quantities of physical interest are obtained from correlation functions, averages of prod-
ucts of observables of local degrees of freedom at different sites of the chain. For ∆ > 1, complicated
calculations show that correlation functions for two separated sites decrease exponentially at large sepa-
rations, for instance:

〈σy
j σ

y
k〉XXZ ∝ e−

|j−k|
ξ as |j − k| → ∞

for some correlation length ξ. This correlation length is a function of the parameter ∆. Hence if we look
at very large distances, we see no quantum correlations at all; this seems natural, since the interaction is
just between nearest neighbours.

But even more complicated calculations show that the correlation length tends towards infinity as
∆ → 1+. Since correlation functions are related to response functions, this will imply singularities in the
magnetic susceptibility, for instance, so that this is a second order (quantum) phase transition. Now, if
we look at very large distances while taking the limit ∆ → 1+, we will still see “something”. But looking
at large distances is like considering the inter-site spacing very small: it is a continuum limit. What we
will see is quite independent of the details of the local interactions, so it is universal, yet it is non-trivial.
What we see is described by QFT, and the process of getting near to a (quantum) phase transition while
looking at larger and larger distances is the scaling limit. Before we take the scaling limit, we can think
of the chain as a regularisation of the quantum field theory, and the process of taking the scaling limit
gives rise to the renormalisation process. Like in the chain we had to shift the Hamiltonian by an infinite
constant as we were going to the continuum, here we have to take ∆ → 1+ as we look at larger distances.
To be more precise:

lim
∆→1+

ξ−2d〈σy
[mxξ]σ

y
[mx′ξ]〉XXZ = 〈vac|O(x)O(x′)|vac〉

where the limit is taken keeping the real parameters x and x′ fixed (and [mxξ] mean that we must take
the integer part of mxξ). On the right-hand side, we have a correlation function in a QFT with a mass
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m, and the operator O(x) is an appropriate local field (see below) “representing” σy in the QFT. The
unique (positive) number d making the limit finite is called the dimension of the field O. The QFT
correlation function is a “scaling function”, and is universal, in that it depends on the details of the
initial quantum chain just through a finite number of parameters (models with very different interactions
and basic constituents could give the same QFT). In this case, the QFT is integrable (it is related to the
quantum sine-Gordon model).

1.5 QFT

From now on, since I will not talk about classicall fields, I will drop the hat on quantum operators.

We can now formalise the main aspects of QFT. It is quantum mechanics:

• A Hilbert space H;

• An operator H acting on H, called the Hamiltonian, which is diagonalizable and whose eigenvalues
are bounded from below; the vector associated with the lowest eigenvalue is the vacuum, |vac〉 ∈ H.

with additional properties:

• Relativistic invariance: operators P (the momentum operator) and B (the boost operator) which
satisfy

[H,P ] = 0 , [B,P ] = iH , [B,H] = iP .

• Locality: one can write

H =
∫
dxh(x) , P =

∫
dx p(x) , B =

∫
dx b(x)

such that two sets of things are true:

1. [P, h(x)] = i
∂

∂x
h(x) , [P, p(x)] = i

∂

∂x
p(x)

2. [h(x), h(x′)] = [p(x), p(x′)] = [b(x), b(x′)] = [h(x), p(x′)] = [h(x), b(x′)] = [p(x), b(x′)] = 0

for x 6= x′. The first equation says that x is a space variable and that the energy and momentum
densities are homogeneous in space.

As usual in quantum mechanics (Heisenberg picture), time is just a parameter associated to the Hamil-
tonian that is generated when we “evolve” an operator O through

O(t) = eiHtOe−iHt .

Usually, one is given a Hamiltonian in terms of fields that satisfy a canonical algebra. In order to
evaluate measurable quantities, one has to go further:

• Construct the Hilbert space H, essentially defined such that the resulting Hamiltonian is bounded
from below, and calculate the eigenvalues of the Hamiltonian;
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• Find all local fields (observables) O(x), defined such that

[P,O(x)] = i
∂

∂x
O(x) , [h(x),O(x′)] = 0 (x 6= x′)

and evaluate their matrix elements, in particular the correlation functions: time-ordered matrix
element of products of them between vacuum states 〈vac|T (O(x, t)O(x′, t′))|vac〉 (we generalised
slightly the concept compared to what we introduced above, and time-ordering means that the
field most to the left is at a later time). In fact, a quantum field theory can also be seen as a set
of correlation functions of local fields, with appropriate properties. Here locality means quantum
mechanical independence with respect to the energy field as space-like distances. Ultimately, we
want a set of fields that are also quantum mechanically independent with respect to each other, so
commute with each other at space-like distances – a set of consistent local observables.

This looks like a huge task, but in integrable QFT we can go a long way towards its completion.

A note on our terminology. We will distinguish two types of operators acting on the Hilbert space: the
“local fields”, which are as defined above, and the “local charges”, which are just integration, on space, of
local fields (the associated charge densities). Hamiltonian and momentum operator are examples of local
charges. In principle, in the integrand there can be also some space-time-dependent density multiplying
the local field; for instance, this is the case of the boost operator. However, we will not need this kind
of charges, so when we will talk about a “local charge” we will always assume that it is uniform in space
and time.

1.6 Factorized scattering theory

With QFT at hand, we can now make more precise the concept of conserved charges in integrable QFT:

• There should be infinitely many local conserved charge:

Q =
∫
dx q(x)

with local charge density q(x):
[q(x), h(x′)] = 0 , x 6= x′ .

Only in integrable models of QFT are there infinitely many local conserved charges. It is natural
that having enough of independent conserved densities, the dynamics should be simpler.

• Relativistic invariance and other space-time symmetries constrains the spectrum and the dynamics
very much, and allows to “count” the conserved charges by looking at their spin (under the boost
transformation). The set of spins for which there are conserved charges is a characteristics of an
integrable system.

Thanks to these two reasons, there is quite a direct link between the presence of local conserved charges
in integrable QFT and the properties that allow us to solve integrable models. In fact, it turns out that
just two conserved charges of higher spin are necessary for integrability (although we always find infinitely
many in integrable models)!
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Note that locality is also a principle that can be used to identify integrable quantum chains, and that
relativistic invariance can also be present classically. But only in IQFT are these two principles so strong.

Factorized scattering theory is a particular set of methods to use the consequences of having these
local conserved charges that applies most naturally to massive models, which are those for which the
correlation functions of local field decrease exponentially fast at large space-like distance.

The steps in the theory of factorizable scattering are as follows:

• Find the exact scattering between particles from analytic properties and factorization (Yang-Baxter
equations);

• Find the exact form factors of local fields (that is, their matrix elements in asymptotic states) from
the knowledge of the scattering matrix and from assumed analytic properties;

• Calculate correlation functions from the form-factor expansion (Lehman expansion).

Hence, even if we are interested in response functions in a condensed matter system, for instance, we still
need to know everything about the scattering matrix and the particles of the QFT describing the scaling
limit.

2 Factorizable S-matrix

2.1 Asymptotic states in massive models

The structure of the Hilbert space can in fact be described to a great extent without knowing the details
of the Hamiltonian, thanks to relativistic invariance. In general, in local quantum field theory, the Hilbert
space is a module for the algebra of space symmetries. A one-particle sub-module is a unitary irreducible
module. Here, we have relativistic invariance, and a unitary irreducible module characterized by the real
number m (and possibly by other quantum numbers if internal symmetries are present) has basis

|θ,m〉 (θ ∈ R)

such that

H|θ,m〉 = m cosh(θ)|θ,m〉 , P |θ,m〉 = m sinh(θ)|θ,m〉 , B|θ,m〉 = −i ∂
∂θ
|θ,m〉 .

This generates an irreducible representation with Casimir

H2 − P 2 = m2 .

The variable θ, the rapidity, is just a convenient way of parametrizing solutions to this equation which
is the usual relativistic dispersion relation. It is natural that we have such a sub-module in H, because
if there is just one stable particle, it cannot interact so it will just propagate freely.

Now, we want quantum field theory to describe the scattering and interaction of particles around a
given time and around a given point, and so we assume that if there are many particles, at a finite time
before or after the “experimentation”, they are separated by a finite distance. Hence, as we go back

10



in time, they whether get more separated, or some may stay together forever, forming bound states. If
we see the bound states as particles themselves, at the infinite past, we have many particles infinitely
separated, so that they all propagate freely. The associated states, the in states, correspond to tensor
products of the one-particle states:

|θ1,m1; θ2,m2; . . .〉in .

Certainly the same is true in the infinite future, giving the out states:

|θ1,m1; θ2,m2; . . .〉out .

Those form two bases for the Hilbert space, with energy

H|θ1,m1; θ2,m2; . . .〉in,out =
∑

k

mk cosh(θk)|θ1,m1; θ2,m2; . . .〉in,out

Note that if in the infinite past we have a pure in state, then most likely in the infinite future we will have
a linear combinations of out states. The overlaps between in-states and out-states form the scattering
matrix, or S-matrix.

Of course, quantum mechanically, a particle cannot have both a definite momentum and a definite
position. To be more precise, the construction of such states goes as follows. First, identify a local field
Ψ(x) that “creates” the particle in which you are interested. This means that it has the quantum numbers
of the particle of interest, and that the Fourier transform of the two-point function

〈vac|T (Ψ(x, t)Ψ(0, 0))|vac〉

(T is the time-ordering symbol, bringing the earliest operator to the right – here we assume Ψ to be a
real field without any charge) has a pole, as function of the square two-momentum E2−p2, at the square
of the mass m2 of the particle, and no other singularity at lower values. In superrenormalizable theories,
such a field can be uniquely determined by requiring that it be of lowest dimension. This means that
correlation functions of such fields will satisfy the Klein-Gordon equation (or other equations depending
on the representation of the Lorentz group associated to the particle) asymptotically at large times

(m2 − ∂2
x + ∂2

t )〈Ψ(x, t) · · ·〉 = O
(
e−m′√t2−x2

)
as t2 − x2 →∞

where m′ is the lowest mass, greater than m, of a state created by this field, and · · · represents fields at
other fixed positions. Consider the operators (wave packets operators)

A(θ)(in,out) = i lim
L→∞

lim
t→∓∞

∫
dx (fθ(x, t)∂tΨ(x, t)− ∂tfθ(x, t)Ψ(x, t)) (2.1)

with

fθ(x, t) = exp

[
im cosh(θ) t− im sinh(θ)x− (x− coth(θ)t)2

L2

]
, (2.2)

as well as their hermitian conjugate A†(θ)(in,out). Here we take Ψ to be bosonic with spin 0; simple modifi-
cations occur for fermions and for other spins. The operators A(θ)(in), A†(θ)(in) satisfy canonical commu-
tation relations, [A(θ)(in), A†(θ′)(in)] = 4πδ(θ − θ′), and similarly for the operators A(θ)(out), A†(θ)(out).
They are also eigenoperators of the Hamiltonian, [H,A†(θ)(in,out)] = m cosh(θ)A†(θ)(in,out). Similar oper-
ators can be defined for all particles of the theory, and operators corresponding to different particle types
commute with each other. The Hilbert space is the Fock space over the algebra of all such in-operators,
which is isomorphic to the Fock space over the algebra of all out-operators.
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In fact, in the wave-packet description above, we chose quite arbitrarily the centers of the wave
packets; we have specified them by making all particles “collide at one point” under an extrapolation of
their free trajectories. Defining the operators A(θ)(in,out) by shifting slightly the central positions of the
wave packets changes when the particles “would collide”, the impact parameter – some particles could
collide first. That is, we could have used the definition

fθ(x, t) = exp

[
im cosh(θ) t− im sinh(θ)x− (x− x0 − coth(θ)(t− t0))

2

L2

]
. (2.3)

Any choice of x0 − coth(θ)t0 leads to a different but legitimate basis of the Hilbert space, and the
overlap between the associated in-states and out-states form a scattering matrix depending on the impact
parameters.

In equations, writing from now on an index a for describing the type of particle (mass, quantum
numbers) instead of explicitly writing the mass, the scattering matrix is defined by

|θ1, θ2, . . . ; imp. param. in〉ina1,a2,... =∑
a′1,a′2,...

∫
dθ′1dθ

′
2 · · ·S

a′1,a′2,...
a1,a2,...(θ1, θ′1, θ2, θ

′
2, · · · ; imp. param. in,out) ·

|θ′1, θ′2, . . . ; imp. param. out〉out
a′1,a′2,...

2.2 Local conserved charges: case of the free boson

An integrable model has an infinity of local conserved charges. It is very instructive to see what they
look like in a simple example. The most simple example possible of conserved charges in an integrable
model are those of the free boson. The Hamiltonian of the free boson is

H =
∫
dx

1
2

[
π2(x) +

(
∂

∂x
φ(x)

)2

+m2φ2(x)

]
with the two local fields φ(x) and π(x) satisfying

[φ(x), π(x′)] = iδ(x− x′) .

The momentum operator is simply expressed as

P = −
∫
dxπ(x)

∂

∂x
φ(x) .

Now, there are many very simple conserved charges in involution that can be constructed:

P(n) = (−1)
n+1

2

∫
dxπ(x)

(
∂

∂x

)n

φ(x)

for any n positive and odd, which have action

[P(n), φ(x)] =
(
i
∂

∂x

)n

φ(x) , [P(n), π(x)] =
(
i
∂

∂x

)n

π(x) .

A simple way to check that these are indeed conserved charges in involution is as follows. First, we can
check explicitly, from the equations of motion for the fields, that

[P(n), [H,φ(x)]] = [H, [P(n), φ(x)]] , [P(n), [H,π(x)]] = [H, [P(n), π(x)]] .
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This means, using Jacobi idendities, that

[[H,P(n)], φ(x)] = [[H,P(n)], π(x)] = 0 .

Hence, in general
[[H,P(n)],O] = 0

for any O formed out of linear combinations of products of fields φ and π. We can in particular form
products of creation and annihilation operators this way. If additionnaly [H,P(n)]|vac〉 = 0, for instance
it is sufficient that P(n)|vac〉 = 0, then

[H,P(n)] = 0

on the Hilbert space. The same arguments can be used for proving involution.

Other charges are

H(n) = (−1)
n−1

2

∫
dx

1
2

[
π(x)

(
∂

∂t

)n

φ(x)− φ(x)
(
∂

∂t

)n

π(x)
]

for odd positive n, where the time derivatives ∂/∂t should really be replaced by what is obtained from
the equation of motion: ∂/∂t· = i[H, ·]. These charges have actions

[H(n), φ(x)] =
(
−i ∂
∂t

)n

φ(x) , [H(n), π(x)] =
(
−i ∂
∂t

)n

π(x)

with the same meaning for the time derivatives. This can be obtained by using explicitlt the equations
of motion (∂/∂x)2 − (∂/∂t)2 = m2 on φ and π, and doing integration by part. In similar ways, one can
imagine how to construct local conserved charges whose action on the fields φ(x) and π(x) are of the type

[Q(n,k), φ(x)] =
(
i
∂

∂x

)n(
−i ∂
∂t

)k

φ(x) , [Q(n,k), π(x)] =
(
i
∂

∂x

)n(
−i ∂
∂t

)k

π(x)

with n+ k positive and odd. They are not all independent, because of the equations of motion. Indeed,
we always have, for instance, (−∂2/∂t2 + ∂2/∂x2)φ(x) = m2φ(x). In order to get the set of independent
charges, it is convenient to use the coordinates z = x − t and z̄ = x + t. Then, one can combine the
charges Q(n,k) to form charges that act through(

∂

∂z

)n′ (
∂

∂z̄

)k′

.

But clearly, ∂/∂z ∂/∂z̄ = m2/4 as a consequence of the equations of motion, so that we are left with only
∂/∂z derivatives or ∂/∂z̄ derivatives. Hence, the independent conserved charges are Qs for odd (positive
or negative) integer s whose action on the fields φ(x) and π(x) are examplified by

[Qs, φ(x)] =
(
∂

∂z

)s

φ(x) (s > 0) , [Qs, φ(x)] =
(
∂

∂z̄

)s

φ(x) (s < 0) .

Under the action of the boost operator B, these charges have spin s, that is, [B,Qs] = sQs. This is most
intuitively seen using mode operators that we saw earlier in the most general constext, with commutation
relations [A(θ), A†(θ′)] = 4πδ(θ − θ′). Here, the Hamiltonian and momentum operators are

H =
∫

dθ

4π
m cosh(θ)A†(θ)A(θ) , P =

∫
dθ

4π
m sinh(θ)A†(θ)A(θ) ,
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and the conserved charges of well-defined spins that we alluded to are simply written, in terms of modes,
as

Qs =
∫

dθ

4π
esθA†(θ)A(θ) .

In particular, Q±1 = m−1(H ± P ).

Here it seems not to be possible to construct local conserved charges of even spins. For free fermions,
similar arguments can be made, but in this case we will have conserved charges of all integer spins. That
is, in the free theories, we have infinitely many independent local Hermitian conserved charges indexed
by integer spins (we just constructed even ones for real bosons). The same type of charge occurs in any
free theory, with or without internal degrees of freedom.

2.3 Elastic scattering

Let us now derive one consequence of the presence of an infinity of local conserved charges in involution
in interacting models. Recall that those are local charges that commute with the Hamiltonian and with
each other. Besides the Hamiltonian, there is one that is trivial: the momentum. From these two charges,
it is convenient, as above, to build two different, with better transformation properties under boost, and
without scale:

Q1 = m−1(H + P ) , Q−1 = m−1(H − P )

where m is the mass of one of the particles of the theory (arbitrarily chosen, this is just a normalisation
of the operator; for instance, take the lowest mass). These charges have eigenvalues

Q±1|θ1, θ2, . . .〉in,out
a1,a2,... =

∑
k

qak
e±θk |θ1, θ2, . . .〉in,out

a1,a2,...

for qak
= mak

/m where mak
is the mass of the particle of type ak, and transform with spin ±1 under

boost.

Remember what locality of a charge essentially means: the charge density q(x) commutes with the
Hamiltonian density h(x′) at different points x 6= x′. In order to derive consequences of conserved charges
on the scattering matrix, we need something just slightly stronger: the charge density q(x) must commute
with a “fundamental” fields creating particles Ψ(x′) at different points:

Q =
∫
dx q(x) , [q(x),Ψ(x′)] = 0 (x 6= x′) .

We say that not only the charge Q is local (that is, its density q(x) is a local field), but also that it is local
with respect to a fundamental fields (that is, its density is a field local with respect to the fundamental
fields). I will come back to the various extension of the concept of locality a bit later in the course. What
we say here, in other words, is that the densities of the conserved charges must be in the consistent set
of local observables that include fields that create the particles.

Then, a conserved charge applied on an asymptotic state with many particles will act independently
on each of them. In fact, the conserved charges that we are interested in are Hermitian local conserved
charges that act on asymptotic states (essentially very separated particles propagating freely) in the same
way as conserved charges of free models (see previous sub-section) act on free particles. That is, they are
conserved charges corresponding to some space-time symmetries, and can always be made to commute
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with possible internal symmetry charges of the model. As we saw, we can always arrange the charges to
have definite spin, so that by relativistic covariance, we have, for some infinite set of spins s,

Qs|θ1, θ2, . . .〉in,out
a1,a2,... =

∑
k

q(s)ak
esθk |θ1, θ2, . . .〉in,out

a1,a2,... .

Note that these charges are automatically in involution.

We can now understand the physical meaning of the numbers q(s)ak . Of course, if there is only one type
of particle, we can normalise the charges to put all these numbers to 1. But if there are many types, this
is not so. However, thanks to the fact that the Qs commute with any internal symmetry, these numbers
will be the same if different particle types fall into a symmetry multiplet. In general, we expect also that
they will be different if not. Hence, these numbers tell us about the belonging to symmetry multiplets.

A comment about impact parameters is in order here. We are not writing them explicitly in the states
above, but the action of a charge may involve a modification of the impact parameters (something which
we do not see in free theories because the states are independent of impact parameters). We will analyse
this in more details below, but for now we just keep in mind that we can choose them as we wich, in such
a way that the conditions we derive below are valid for scattering matrices of any impact parameters.

The values of the spins s for which there is a conserved charge and the numbers q(s)ak are usually good
fingerprint of a given integrable model (although there isn’t a one-to-one relation). Now, in the equation
above, take the in states, and sandwich the whole equation with the conjugate out state

a′1,a′2,...
out〈θ′1, θ′2, . . . | .

We see that the overlap between an in state and an out state is non-zero only if the following equation
is satisfied: ∑

k

q(s)ak
esθk =

∑
k

q
(s)
a′k
esθ′k .

This is an infinite set of equations (for all spins s occuring in the model) for an indefinite number
of the rapidities θ′k and particle types a′k, being given the rapidities θk and the particle types ak. One
solution is obviously

{θ′k} = {θk} , q
(s)
a′k

= q(s)ak
for θ′k = θk .

In fact, if we require the solution for the out-going rapidities to be {θ′k} = {θk} for all sets of in-going
rapidities {θk}, then the only possibility for the particle types is q(s)a′k

= q
(s)
ak for θ′k = θk. The meaning

of these equalities is that particle types must be the same in the in and out states, and particles can
exchange their rapidities only if they are part of a symmetry multiplets. I am talking of exchanging
rapidities, because if particles are part of a symmetry multiplets, conservation of this symmetry implies
that particle types in that symmetry multiplet must also be the same in the in and out states. This is
elastic scattering: the number of particles going out is the same as that coming in, and they have the
same rapidities, with possible exchanges and possible modifications of the particle types.

We would indeed like to conclude elastic scattering, but for this we need to do a little bit more analysis
from this argument. In principle there may be other solutions than {θ′k} = {θk}, depending on how the
numbers q(s)ak behave as function of s. The simplest way to see this is to construct the following analytic
function of α, defined by its expansion at large α:

fak
(α) =

∑
s>0

e−sαq(s)ak
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where the sum is over all spins that occur in the model; we assume this series to be convergent for α
large enough. Our condition, for positive spins, then becomes∑

k

fak
(α− θk) =

∑
k

fa′k
(α− θ′k) ∀α

(we can do something similar for negative spins; if we have parity symmetry, it is sufficient to look at
positive spins). If the function fak

(α) has only one singular point on the real line at the same position
for all particle types ak, then the only possibility, for any real {θk}, is indeed {θ′k} = {θk}.

Take, for instance, the situation where there is only one particle type, or when there are many but
thay all fall into one multiplet of some internal symmetry. Then, we must have q(s)ak = q

(s)
a′k

so that they
can all be set to 1. If, for instance, only odd spins are involved (this is the situation in the SU(2)-Thirring
model, for instance), the analytical function f(α) is

f(α) =
1

2 sinh(α)
.

This indeed only has one pole on the real line, and the conclusion follows.

But take, for instance, a fictitious case where we only have odd spins, where for a particle type 1, we
have q(s)1 = 1, and where for a particle type 2, we have q(s)2 = 1 + e−sβ for s > 0. Then clearly, if there
are just two in rapidities and if we have with θ1 = θ2 + β and a1 = a2 = 2, then we can choose to have
only one out rapidity with θ′1 = θ1 and a′1 = 2, and the equation is satisfied for all α.

This fictitious situation has never been seen in any model, to my knowledge. In order to establish
elastic scattering from this argument, we must check in explicit models what the q(s)a look like. Admittedly,
then, this argument is not as strong as we would like it to be, but generically, we see a singularity only
at α = 0 in f(α) for α ∈ R. From this we may conclude that the obvious solution is the only one for real
rapidities:

{θ′k} = {θk} , q
(s)
a′k

= q(s)ak
for θ′k = θk .

2.4 Factorized scattering: Yang-Baxter equations

We consider again the overlap

a′1,a′2,...
out〈θ′1, θ′2, . . . ; imp. param,|θ1, θ2, . . . ; imp. param.〉a1,a2,...

and look at the dependence on the impact parameters. It will be convenient and sufficient for our purposes
to choose the “same” impact parameters for in and out particles; that is, for given impact parameters of
in states, we choose the impact parameters of out particles to be those obtained by an extension of the
trajectory of the in particles all the way to the out particles as if they were not interacting. The main
point is to write the simple identity:

a′1,a′2,...
out〈θ′1, θ′2, . . . ; imp. param.|eiαQse−iαQs |θ1, θ2, . . . ; imp. param.〉ina1,a2,... =

a′1,a′2,...
out〈θ′1, θ′2, . . . ; imp. param.|θ1, θ2, . . . ; imp. param.〉ina1,a2,... . (2.4)

We can exploit this formula by analysing in more details than above the action of a conserved charge on
asymptotic states. More precisely, we will see that the scattering matrix is in fact independent of impact
parameters, and this will lead to Yang-Baxter equation.
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From the formula (2.1) for the operators destroying/creating asymptotic in-states, let us compute

[Qs, A(θ)(in)] = lim
L→∞

lim
t→−∞

∫
dx (fθ(x, t)∂t[Qs,Ψ(x, t)]− ∂tfθ(x, t)[Qs,Ψ(x, t)])

where the function fθ(x, t) is given in (2.2). Let us consider for now L finite but large, and take the
limit on t. We can evaluate the commutators involved, because the conserved charges act like higher-spin
conserved charges on free particles as t→ −∞. For instance, for positive spins we have

− (−i)sq(s)

ms
lim

t→−∞

∫
dx (fθ(x, t)∂t(∂x − ∂t)sΨ(x, t)− ∂tfθ(x, t)(∂x − ∂t)sΨ(x, t)) .

We can move the derivatives (∂x − ∂t) on the fields to the same derivatives on the wave packet fθ(x, t)
with an overall sign (−1)s. This is obvious for the space derivatives: we do this by integration by part.
For the time derivatives, consider the following fact: if a product fg is time independent, then certainly
f∂tg = −(∂tf)g. Now for large times, the integral we have is a free-evolving wave packet. We know from
quantum mechanics that these evolve in two ways: the centre evolves following a straight trajectory, and
the wave packet spreads. The first is taken into account in fθ(x, t), but the second is not. However, the
effect of the spreasing is a term in the exponential in (2.2) of the form (x− coth(θ)t)2/L3∂L(t)/∂t. Now,
from L(t) =

√
L2 + (t− t0)2 (with L(t0) = L), we have ∂L(t)/∂t ∼ 1/(mL) for any finite (t − t0) (that

is, of the order of m−1). Since x− coth(θ)t is of the order of mL in a wave packet, this correction term
is O((mL)−2), and we will neglect these terms. Hence, we can move the time derivatives in the limit on
t, up to these terms for large L. We must be careful to use time independednce on the difference of the
two terms in the definition asymptotic state operators. This allows us to move time derivatives except
for terms with only one time derivative, but these don’t need to be moved. We then get

− i
sq(s)

ms
lim

t→−∞

∫
dx ((∂x − ∂t)sfθ(x, t)∂tΨ(x, t)− ∂t(∂x − ∂t)sfθ(x, t)Ψ(x, t)) .

Now consider the large L asymptotic: we will keep terms up to in 1/(mL), while always considering
x− coth(θ)t of the order of L. We have

− i
sq(s)

ms
(∂x − ∂t)sfθ(x, t) = −q(s)esθ

[
1 +

2s
imL sinh(θ)

x− coth(θ)t
L

+O((mL)−2)
]
fθ(x, t) .

We recognize the leading term as giving the correct eigenvalue of Qs on asymptotic states, but we want
to analyse the effect of the additional term. Let us write it as

− i
sq(s)

ms
(∂x − ∂t)sfθ(x, t) = −q(s) exp

[
sθ +

2s
imL sinh(θ)

x− coth(θ)t
L

+O((mL)−2)
]
fθ(x, t) .

In order to calculate
eiαQsA(θ)(in)e−iαQs ,

we compute
∞∑

n=0

1
n!

(
−iαi

sq(s)

ms

)n

(∂x − ∂t)nsfθ(x, t)

= exp
(
−iαq(s) exp

[
sθ +

2s
imL sinh(θ)

x− coth(θ)t
L

+O((mL)−2)
])

fθ(x, t)

Expanding at large L, the right-hand side can be written

exp
(
−iαq(s)esθ

)
exp

[
iM cosh(θ) t− iM sinh(θ)x− (x− x0 − coth(θ)(t− t0))

2

L2
+O((mL)−2)

]
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with
m cosh(θ)t0 −m sinh(θ)x0 = αq(s)sesθ .

It is convenient to choose have x0 = −t0 ≡ l.

We recognize this as, up to the factor exp
(
−iαq(s)esθ

)
containing the eigenvalue of Qs, simply the

wavepacket (2.3) with non-zero impact parameters. The impact parameter is given by

ml = −αq(s)se(s−1)θ (s > 0) .

If s = 1, it is clearly independent of θ, but otherwise, the impact parameters depend on the rapidity θ.

A similar derivation holds for negative spins. The action of Qs on a field Ψ(x, t) in this case is

[Qs,Ψ(x, t)] = − (−i)sq(s)

m|s| (∂x + ∂t)|s|Ψ)(x, t) (s < 0)

and we will have x0 = t0 ≡ l. The impact parameter then takes the value

ml = −αq(s)se(s+1)θ (s < 0) .

Hence, we found that

eiαQsA(θ)(in)e−iαQs = e−iαq(s)esθ

A(θ)(in)
∣∣∣
impact parameter l

and the same thing holds, for conjugate eigenvalue, for the operator A†(θ)(in). Looking back at (2.4), we
realize that the scattering matrix is invariant under such changes of impact parameters.

It is not a priori clear that using enough conserved charges, we can bring the impact parameters to any
value we want, hence showing that the scattering matrix is independent of impact parameters. However,
there is a simple and strong argument that can do this. First, we must realise that the 2-particle S-matrix
does not depend on the impact parameters. Indeed, by convention, we chose the out impact parameters
to agree with the in impact parameters (which can always be done in elastic scattering). Then, space
and time translation invariance means that the 2-particle S matrix is independent of impact parameters.
Consider then the 3-particle to 3-particle scattering, with scattering matrix

S
a′1,a′2,a′3
a1,a2,a3 (θ1, θ2, θ3; l1, l2, l3) .

Here we use elastic scattering and write only the three rapidities involved. The particle types a1, a2, a3

are for the in-particles of rapidity θ1, θ2, θ3 respectively, and similarly for a′1, a
′
2, a

′
3 for the out-particles.

The parameters l1, l2, l3 are the associated impact parameters. Consider the set of rapidities (θ1, θ2, θ3)
for which the three impact parameters resulting from the action of Qs,

−αm−1
ai
q(s)ai

se(s−1)θ , i = 1, 2, 3

are not all equal to each other. There is only possibly one set (θ1, θ2, θ3) for which this is not so for a
given spin s; for this one, we must use another conserved charge of a different spin and verify that the
inequality holds. If we have parity invariance in the theory, we can use the conserved charge of spin −s
(we have q(−s)

a = q
(s)
a in parity invariant models), and we are guaranteed that it will work. Then, we can

use invariance under shift of impact parameters for each particle, and with α large enough, the impact
parameters become so different that the particle will only meet pair by pair at points very distant from
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each other: say particles 1 and 2 first, then particle particles 1 and 3, finally particles 2 and 3. Since
these meeting points are very far from each other, by locality the 3-particle S-matrix decomposes itself
into products of 2-particle S-matrices:

S
a′1,a′2,a′3
a1,a2,a3 (θ1, θ2, θ3; l1, l2, l3) = Sc,b

a1,a2
(θ1, θ2)S

a′1,d
c,a3 (θ1, θ3)S

a′3,a′2
b,d (θ2, θ3)

(with implicit sum over repeated indices). Since this does not depend anymore on the initial impact
parameters, this shows that the scattering matrix does not depend on them. Hence, we can also choose
them so that we get the opposite situation: particles 2 and 3 meet first, then particles 1 and 3, finally
particles 1 and 2 (equivalently, we could have taken α large with opposite sign). The two ways of
decomposing it give the same value:

Sc,b
a1,a2

(θ1, θ2)S
a′1,d
c,a3 (θ1, θ3)S

a′2,a′3
b,d (θ2, θ3) = Sb,c

a2,a3
(θ2, θ3)S

d,a′3
a1,c (θ1, θ3)S

a′1,a′2
d,b (θ1, θ2) (2.5)

This equation (or set of equations) is called Yang-Baxter equation.

Now consider the multi-particle scattering. We can apply a similar argument and write it as a product
of a n− 1-particle S-matrix times a 2-particle S-matrix. Recursively, we then get a product of 2-particle
S-matrices. Again this is true for any initial impact parameters, so that it does not depend on them.
Repeated use of Yang-Baxter equation insures that we can write it as any decomposition into 2-particle
S-matrices.

Note that we only needed two conserved charges of spin higher than 1 to do these manipulations! Using
similar arguments, Parke (1980) was able to actually prove elastic scattering as well as factorizability,
using two local conserved charges of higher spin.

It is worth noting that similar arguments could be attempted in higher dimension. The presence of
higher-spin conserved charges indeed give there the independence form impact parameters, and in higher
than on space dimension, this means that we can choose the trajectory to all avoid each other. Hence the
theory has to be trivial: free fermions or free bosons. This is the essence of Coleman-Mandula theorm
(1967).

2.5 Analytic and other properties of the two-particle S-matrix

Besides satisfying the Yang-Baxter equation (2.5), the two-particle S-matrix must satisfy other, simpler
equations that are consequences of general properties of QFT, as well as “bootstrap” equations, which
are like Yang-Baxter equations but which concern bound states.

The first equation comes from Lorentz invariance, and says that only the difference of rapidities
matters:

Sb1,b2
a1,a2

(θ1, θ2) = Sb1,b2
a1,a2

(θ1 − θ2) .

The second is about the fact that the transformation from in-states to out-states is unitary. From
|θ1, θ2〉(in)

a1,a2 =
∑

b1,b2
Sb1,b2

a1,a2
(θ1 − θ2)|θ1, θ2〉(out)

b1,b2
and orthonormality of both in-states and out-states, we

have ∑
b1,b2

Sb1,b2
a1,a2

(θ)
(
Sb1,b2

c1,c2
(θ)
)∗

= δc1
a1
δc2
a2

(2.6)

(for real θ). Note that the unitarity relation for non-integrable models is not this, because there is in
general more intermediate states, with more than 2 particles.
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With time-independent Hermitian Hamiltonian, there is time-reversal symmetry. This says that if we
reverse the direction of time and if all particles are replaced by their corresponding anti-particle, then
the scattering amplitudes are the same. The consequence for the two-particle scattering matrix is

(time-reversal symmetry) Sb1,b2
a1,a2

(θ) = Sā2,ā1

b̄2,b̄1
(θ)

(for real rapidities). The exchange of horizontal position of the indices occurs because if a particle is
travelling to the right, then under time reversal, its anti-particle travels to the left. The notation ā

means that we must take the particle index corresponding to the anti-particle of that of particle type a.
Generically, there will be a conjugation matrix Ca,b such that

Aā = Ca,bA
b , Aā = Ca,bAb ,

with property
Ca,bC

b,c = δc
a .

The most important properties of the scattering matrix is its analytical structure. General principles
of QFT (or of the theory of analytic S-matrices) say the following:

In a general model of (1+1-dimensional) QFT, as an analytic function of the Mandelstam variable

s = m2
1 +m2

2 + 2m1m2 cosh(θ1 − θ2) ,

the two-particle to two-particle scattering matrix (preserving the masses – such a scattering is always
elastic from the kinematics) is a multi-valued function, and possesses a Riemann sheet with only three
branch points where it is otherwise meromorphic. On this sheet, called the physical sheet, the branch
points are at (m1 + m2)2, (m1 − m2)2) and ∞, the cuts are on the real line avoiding the interval
[(m1 −m2)2, (m1 + m2)2], and the only possible poles are on this interval. This sheet is characterised
by the fact that the physical values of the scattering matrix are just above the cut on the interval
[(m1 +m2)2,∞] of the real line.

The prescription “just above the cut” for the physical values of the scattering can be understood as
coming from Feynmann’s prescription for the propagator. The poles on the real line, between the cuts,
correspond to possible bound states between the two particles involved in the scattering. The restriction
to 1+1-dimensional QFT implies that the 2-particle scattering matrix only depends on the Mandelstam
variable s.

Back in the θ = θ1 − θ2 plane, the physical sheet corresponds to the strip Im(θ) ∈ [0, π], the branch
points are θ = 0, iπ,∞, and the cuts run along the lines Im(θ) = 0, π connecting to infinity. They may
be chosen to run towards the left or towards the right. The poles corresponding to bound states lie on
the line Re(θ) = 0 in the physical strip.

An important relation valid on the physical sheet is called “Hermitian analyticity”, or when there is
parity invariance, “real analyticity”. It simply says that the complex conjugate of the scattering matrix
on the physical sheet is the scattering matrix on the complex conjugate argument still on the physical
sheet: (

Sb1,b2
a1,a2

(θ)
)∗

= Sa2,a1
b2,b1

(−θ∗) . (2.7)

Notice how the real part of the rapidity changes its sign. This is because s 7→ s∗ on the physical sheet
corresponds to θ 7→ −θ∗.
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This relation can be understood as follows. Consider the path-integral formulation of the scattering
matrix, with real rapidities and θ1 > θ2:

Sb1,b2
a1,a2

(θ) =
∫

Ψak
∝A(x−ck)eiEkt−ipkx (c1<c2, t→−∞)

Ψbk
∝A(x−c′

k
)eiEkt−ipkx (c′1>c′2, t→+∞)

[dΨ]eiS[Ψ] .

Here, the Ψk are the well-separated wave packets, and A is a Gaussian envelope, as before. The numbers
ck, c

′
k are the centers of the envelopes. Taking the complex conjugate of this gives

(
Sb1,b2

a1,a2
(θ)
)∗

=
∫

Ψak
∝A(x−ck)e−iEkt+ipkx (c1<c2, t→−∞)

Ψbk
∝A(x−c′

k
)e−iEkt+ipkx (c′1>c′2, t→+∞)

[dΨ]e−iS[Ψ] .

On the other hand, time-reversal invariance can be written

Sb1,b2
a1,a2

(θ) =
∫

Ψak
∝A(x−ck)e−iEkt−ipkx (c1<c2, t→+∞)

Ψbk
∝A(x−c′

k
)e−iEkt−ipkx (c′1>c′2, t→−∞)

[dΨ]e−iS[Ψ] (θ1 > θ2) .

Comparing gives (2.8) for θ real and positive, if we consider that the region θ1 < θ2 of the latter expression
is obtained by analytic continuation in θ. Analytic continuation gives it for all θ on the physical sheet.

If there is parity invariance:

(parity invariance) Sb1,b2
a1,a2

(θ) = Sb2,b1
a2,a1

(θ)

then Hermitian analyticity implies real analyticity,(
Sb1,b2

a1,a2
(θ)
)∗

= Sb1,b2
a1,a2

(−θ∗) , (2.8)

because we always have CPT invariance (charge-parity-time-reversal invariance) from general principles
of QFT:

(CPT invariance) Sb1,b2
a1,a2

(θ) = Sa1,a2
b1,b2

(θ) .

Now we may combine Hermitian analyticity with the unitarity relation of integrable models derived
above, in order to obtain

Sb1,b2
a1,a2

(θ)Sc2,c1
b2,b1

(−θ∗) = δc1
a1
δc2
a2
. (2.9)

This relation is usually called “unitarity” for the 2-particle S-matrix in integrable models. It is important
to recall that −θ∗ means the analytic continuation from θ two −θ∗ counterclockwise around the point 0
(that is, for physical initial θ > 0, we always stay on the physical strip to reach −θ).

Another relation, again consequence of general principles of QFT, is crossing symmmetry. It essentially
says that quantizing the theory in a scheme where the time and space arrows are rotated by π/2 gives
the same scattering amplitudes. For the 2-particle scattering Sb1,b2

a1,a2
(θ1 − θ2), the slope of the world line

of particle k is coth(θk). Making a π/2 counter-clockwise rotation amounts to θk 7→ iπ/2 − θk, to be
understood as analytic continuation on the physical strip, and after this rotation particle 2 seems like
propagating in reverse time. We can then use time-reversal symmetry in order to transform it to an
anti-particle propagating correctly, and we must remember that when complex values of rapidities are
involved, time-reversal symmetry involves complex conjugation of the rapidities (understood, again, on
the physical strip of θ1 − θ2). Hence, we find

Sb1,b2
a1,a2

(iπ − θ) = Sā2,b1
b̄2,a1

(θ) (2.10)
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Now it is possible to understand the nature of the branch points at θ = 0, iπ on the physical strip.
Start at θ > 0 real, and use the unitarity relation (2.9) in order to travel to θ < 0 real, always staying on
the physical strip. Using again (2.9) with θ < 0 real, we get the analytic continuation all the way around
the point 0. But this is equal to the initial value:

Sb1,b2
a1,a2

(θ)Sc2,c1
b2,b1

(−θ∗)[Sd1,d2
c1,c2

(θ)]anal. cont. around 0 = Sd1,d2
a1,a2

(θ) = [Sd1,d2
a1,a2

(θ)]anal. cont. around 0

(we used unitarity in two different ways for contracting the two different pairs of S-matrices). Hence, the
point θ = 0 is in fact not a branch point, it is a regular point without any singularity; this means that
the corresponding branch point in the s-plane is a square-root branch point. By crossing symmetry, the
same is true for the point θ = iπ.

This means that the S-matrix is a meromorphic function of θ, its poles on the physical strip can only
be on the imaginary axis, and once it is determined on the physical sheet, it is determined everywhere
on the θ-plane. Also, if the poles and their residues are known on the physical strip and on the strip
Im(θ) ∈ [−π, 0], then it is determined everywhere.

Finally, there are additional conditions coming from possible bound states. A bound state manifests
itself by a virtual particle being created in a two-particle scattering process, and gives rise to a pole in
the S-matrix at the corresponding imaginary value of the rapidity. This value is sole consequence of the
kinematics. For two particles of masses m1 and m2 forming a particle of mass m, it is

cosh(θ) =
m2 −m2

1 −m2
2

2m1m2
. (2.11)

The residue at the pole is purely imaginary, iR. If R > 0, this is a bound state in the “direct” channel,
if R < 0, it is in the “crossed” channel (as if the virtual particle were travelling faster than the speed
of light!). This would not be of much use if it were not for the resulting “bound-state Yang-Baxter”
relations. They are not as easy to derive from local conserved charges, and I will not go into any detail
of there derivation; but they are easy to state. They can just be seen as consistency in the different ways
of decomposing a 3-particle scattering, where two of the particles (say particle 1 and 2) form a virtual
bound-state particle, into products of 2-particle scattering. The assumption is that any bound state is a
particle that is part of the asymptotic state spectrum (this assumption is called “nuclear democracy”),
hence particle 3 can scatter with the bound-state of particles 1 and 2 as if it were an asymptotic particle,
and this must give the same result as when particle 3 scatters with particles 1 then 2 separately.

2.6 Zamolodchikov-Faddeev algebra

A convenient way of representing the properties of factorized scattering is using the Zamolodchikov
algebra. It is the exchange algebra generated by elements Za(θ), which are parametrised by particle type
a and rapidity θ. This algebra is used to represent states in integrable QFT by associating to a state
an element of the enveloping algebra of Zamolodchikov’s algebra. The horizontal position of each factor
corresponds to the position of the particles in the scattering process at a given time. For instance, the
in-state, where wave packets are ordered from the most positive rapidity at the left to the most negative
one at the right, is represented by the product (an element of the enveloping algebra)

Za1(θ1) · · ·Zan(θn) , θ1 > · · · > θn .

Since, as we saw, we can choose the impact parameters so that scattering occurs 2 particles by 2 particles
at points very separated from each other, we can define “intermediate states”, which are neither in nor
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out, where wave packets travel freely and are ordered in such a way that some may never meet in the
future (going in opposite directions after having scattered already). Such states would not make sense in
ordinary quantum field theory, or at least would be of no interest, because in this case such a situation
never happens by construction (the asymptotic states are initially defined such that particles meet in a
finite region of space-time); it only happens, or is useful, thanks to independence from impact parameters.
Then, in general, such intermediate states will be represented by

Za1(θ1) · · ·Zan(θn) , any ordering of θ1, . . . , θn .

Physical scattering tells us that the Zamolodchikov algebra elements must satisfy the exchange relation

Za1(θ1)Za2(θ2) = Sb1,b2
a1,a2

(θ1 − θ2)Zb2(θ2)Zb1(θ1) , θ1 > θ2 . (2.12)

In order to verify associativity of this algebra, it is sufficient to check that the two ways of obtaining
Za3(θ3)Za2(θ2)Za1(θ1) from Za1(θ1)Za2(θ2)Za3(θ3) are consistent. They are indeed consistent thanks to
the Yang-Baxter equation (2.5).

The relation (2.12) was written for θ1 > θ2. The exchange relation for θ1 < θ2 follows from it by
exchanging θ1 and θ2, but if we want to write it in the same form as (2.12), we need to define Sb1,b2

a1,a2
(θ1−θ2)

for θ1 < θ2. The algebra tells us that it should be defined such that the following equation is sastisfied:

Sb1,b2
a1,a2

(θ1 − θ2)S
c2,c1
b2,b1

(θ2 − θ1) = δc1
a1
δc2
a2
.

This is just a consequence of the algebra, but we may wonder if the analytic continuation of the physical
2-particle scattering matrix Sb1,b2

a1,a2
(θ1 − θ2) from the region θ1 > θ2 to the region θ1 < θ2 would give a

function that satisfies this relation. It is not a priori clear that this must be so (and certainly it is not
true of a 2-particle scattering matrix in non-integrable models), but since the states we constructed are
actual asymptotic-like state of integrable models, we could expect that the relation above is true for the
2-particle scattering matrix as an analytical function of the rapidities. Comparison with the previous
sub-section shows that it is so.

It is just a small step from representing states using the enveloping algebra of Zamolodchikov’s algebra
to constructing the Hilbert space as a module for a slightly extended algebra, Zamolodchikov-Faddeev
algebra. It is defined by the relations

Za1(θ1)Za2(θ2)− Sb1,b2
a1,a2

(θ1 − θ2)Zb2(θ2)Zb1(θ1) = 0

Z̄a1(θ1)Z̄a2(θ2)− Sa1,a2
b1,b2

(θ1 − θ2)Z̄b2(θ2)Z̄b1(θ1) = 0 (2.13)

Za1(θ1)Z̄
a2(θ2)− Sa2,b1

b2,a1
(θ2 − θ1)Z̄b2(θ2)Zb1(θ1) = 2πδa2

a1
δ(θ1 − θ2) .

The Hilbert space can then be constructed as a Fock space over this algebra, with vacuum defined by
Z̄a(θ)|vac〉 = 0, and with conjugation defined by Za(θ)† = Z̄a(θ). Consistency of these relations is
a consequence of Yang-Baxter relation (2.5) and unitarity (2.9), and consistency with the Hermitian
structure is consequence of Hermitian analyticity (2.8).
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2.7 Simple examples, CDD ambiguity, and defining QFT from the scattering

matrix

2.7.1 Recapitulation of the requirements

The problem of finding the scattering matrix is now reduced to the problem of solving a set of equations
along with analytical conditions (a Riemann-Hilbert problem). We want to find a function Sb1,b2

a1,a2
(θ) that

is meromorphic and that satisfies:

1. Yang-Baxter equation (2.5);

2. Hermitian analyticity (2.8);

3. unitarity (2.9);

4. crossing symmetry (2.10);

5. bound state consistency relations when poles on the physical strip (2.11) are present.

The solutions to this problem can be characterized by the possible structure of solutions to the Yang-
Baxter equations.

2.7.2 A diagonal example

The simplest structure is diagonal scattering: Sb1,b2
a1,a2

(θ) = δb1
a1
δb2
a2
Sa1,a2(θ) (no sum over repeated indices!).

This trivially solves Yang-Baxter relations, and we are left only with the other requirements. The most
general solution to requirements of points 2, 3 and 4 above is the following:

Sa,b(θ) =
∏

x∈Xa,b

sinh
(

1
2 (θ + iπx)

)
sinh

(
1
2 (θ − iπx)

) (2.14)

where Xa,b is a set of a finite number of complex numbers lying, for instance, in the strip Re(x) ∈ [−1, 1].
If these numbers are all in the strip Re(x) ∈ [−1, 0], then there are no poles on the physical strip, and
this immediately is a valid scattering matrix! An example of such a model is the so-called sinh-Gordon
model. It is a model with only one particle in the spectrum of asymptotic states and, besides the mass
of this particle, one additional free real parameter b. The scattering amplitude is

S(θ) =
tanh

(
θ
2 −

iπb2

2(b2+1)

)
tanh

(
θ
2 + iπb2

2(b2+1)

)
The classical action of the sinh-Gordon model is written in terms of a single real b1osonic field φ:

A =
∫
dx dt

{
1

16π
[
(∂tφ)2 − (∂xφ)2

]
− 2µ cosh(bφ)

}
.

The mass of the particle is proportional to a power of µ. The fact that the scattering amplitude above
corresponds to this action is really a conjecture, but I will discuss below possible ways of going from
classical action to a solution to the equations for the scattering matrix.

If poles are present on the physical strip, we must additionaly solve the consistency relations for bound
states. I will not go at all into this quite extensive subject...
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2.7.3 A non-diagonal example

Another class of solutions to the Yang-Baxter equations are those where two types particles (that we will
characterize by two charges +/−), scatter into one another, with scattering matrix of the form

S(θ) =

+ + +− −+ −−
a(θ) 0 0 0
0 b(θ) c(θ) 0
0 c(θ) b(θ) 0
0 0 0 a(θ)


++
+−
−+
−−

The pairs of signs on the right are the lower indices, and those on the top are the upper indices of the
scattering matrix Sb1,b2

a1,a2
(θ). The Yang-Baxter equation then amounts to only two equations:

a(θ12)b(θ13)c(θ23) = b(θ23)c(θ12)c(θ13) + a(θ13)b(θ12)c(θ23)

a(θ12)a(θ23)c(θ13) = a(θ13)c(θ12)c(θ23) + b(θ12)b(θ23)c(θ13)

where θij ≡ θi − θj . From this, one then needs to solve the four other requirements written above. A
solution that has no pole on the physical strip is that of the so-called SU(2)-Thirring model. It is a
model with two particles of equal mass and of opposite SU(2) spin, transforming under the fundamental
representation of SU(2), without any other free parameter than the mass and having a scattering matrix
as above with

a(θ) =
Γ
(

1
2 −

iθ
2π

)
Γ
(

iθ
2π

)
Γ
(

1
2 + iθ

2π

)
Γ
(
− iθ

2π

) , b(θ) = a(θ)
θ

iπ − θ
, c(θ) = a(θ)

iπ

iπ − θ
.

The classical action of this model is written in terms of a Dirac spinor Ψ with extra index in the funda-
mental representation of SU(2):

A =
∫
dx dt

(
Ψ̄γµ∂µΨ− g

2

∑
m

Ψ̄γµσ
mΨΨ̄γµσmΨ

)

where σm are Pauli matrices and γµ are Dirac gamma-matrices. The parameter g, which is classically
dimensionless, is in fact a running coupling constant under the action of the renormalisation group, and
the scale associated to this running gives rise to the physical mass of the particle; this process is called
“dimensional transmutation”.

2.7.4 CDD ambiguity

It is important to note that in general, any solution to the 5 requirements above can always be multiplied
by a factor (2.14) for Re(x) ∈ [−1, 0], giving another solution. This is called a CDD factor (from Castillejo,
Dalitz and Dyson, 1956), and the resulting ambiguity for the scattering matrix is the CDD ambiguity.
The sinh-Gordon example is a pure CDD factor1. Resolving the CDD ambiguity cannot be done solely
using the techniques of factorized scattering theory; one needs to do perturbative calculations of the
scattering matrix or other, non-perturbative checks.

1Hence, its scattering amplitude is just a CDD factor times the scattering amplitude of a free massive Majorana fermion!
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2.7.5 From classical action to scattering matrix

We have seen some examples of solutions to the set of requirements for the scattering matrix. We also
related these examples to classical actions. How to figure out such a relation? This is in general a very
complicated problem for which there is no general solution. However, we can often go a long way towards
its solution in certain situations.

1. Sometimes it is possible to determine the spectrum of asymptotic particles (masses and types)
from semi-classical calculations on the classical action. This occurs when we can write down explicitly
classical solutions to the equation of motion. Every asymptotic state corresponds to a given solution to
the classical equation of motion. Indeed, suppose we have an action depending on a field φ (hence an
equation of motion for this field). Then we can formulate the matrix elements of operators between two
given asymptotic states via a path integral with asymptotic conditions on φ at t = ±∞ corresponding
to the large-time limit of appropriate classical solutions2. The most pictorial situation is when the
classical solutions are soliton-like. Then, we understand that the asymptotic particles are actually just
quantization of the solitons (bumps or kinks that seem to propagate locally in classical solutions without
being affected by one another at large distances)3.

If both in and out asymptotic states are the same, then, in order to evaluate approximately these
matrix elements, we can just make a saddle-point expansion of the integrand around the required classical
solution; this is the WKB approximation scheme. Of course this is an approximate method in general, but
the magic occurs when we want to calculate the masses of the particles and of the bound states that they
can form using WKB approximation: it turns out that the results to leading order are exact in integrable
models! There is no proof of that, it is more an “empirical” result, but there is an understanding as follows.
Recall that in integrable models of classical mechanics (where everything is clear), the orbit on phase
space always falls onto tori. But we know that for systems of this type, the “old quantization method”
from Bohr, by which we simply quantize periodic orbits by requiring that the total phase space area be a
multiple of ~, is actually correct: take the example of the hydrogen atom (which is an integrable model).
This old quantization method is essentially the leading order of the WKB approximation. Transferring
all this to integrable QFT (neglecting the details about the infinity of degrees of freedom!) we may
understand the result above. Once we have the masses of the particles and the bound states they can
form, there is little ambiguity in the solution to the requirements above that we must take, except mainly
for the CDD ambiguity. To fix all ambiguities, one generecally needs to perform some perturbative
calculations or checks of other types.

2. Another way of making quite explicit calculations from the classical action is by applying the
methods of “coordinate Bethe ansatz.” This aims at solving the system explicitly by constructing the
Hilbert space starting from a simple reference state (“pseudo-vacuum”) and by making a simple ansatz
for the excited states. After lengthy and tedious calculation this sometimes leads to the full spectrum
and even to the scattering matrix itself.

3. Finally, it is also sometimes possible to have an explicit, integrable “lattice regularisation” of the
2To make a connection with the previous description of asymptotic states via a “fundamental fields” creating particles,

a fundamental field for some particles is essentially a field such that its large-time asymptotic in some classical solutions

looks, in a sense that can be made precise, like separated free plane waves.
3Again in connection to the concept of “fundamental field”, the field, say φ, whose classical configurations are solitons is

not the “fundamental field” associated to the particles corresponding to its solitons. Indeed, solitons do not look like plane

waves at large time! Generically, the fundamental field for such particles is a very complicated functional of φ.
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QFT, or quantum-chain regularisation. Integrable quantum chains and lattice models can be solved by
the method of algebraic Bethe ansatz, and, although from this solution it is still very hard to go back
to the QFT model and often not known how to do that, we may still have enough intuition about the
spectrum in order to determine the scattering matrix.

2.7.6 The “scattering matrix” formulation of QFT

Recall how I defined a QFT: a Hilbert space with a local Hamiltonian bounded from below and local
space-time symmetry generators. Now that we have an idea about how to go from a given Hamiltonian
to the scattering matrix, it is worth noting that a local massive QFT can equivalently be defined by
giving a set particles and masses (hence having the Hilbert space and the action of the Hamiltonian on
it) and a scattering matrix with specific properties. The specific properties are complicated in general
(this is the theory of the analytic S-matrix), but in integrable models, they are just as described above.
Note that just giving a set of particles and masses, although it directly gives the Hilbert space and the
action of the Hamiltonian on it, does not say anything about the Hamiltonian density, which is essential
for describing locality of the QFT. Essentially, all the locality properties of the QFT are hidden into the
scattering matrix. This is quite non-trivial; for instance, how do we define local fields if we don’t have
an explicit Hamiltonian density? How do we calculate their correlation functions? These questions are
what is assessed in the next chapter.

3 Form factors

We now start with the assumption that we know the exact scattering matrix, and that it is elastic
and factorizable. Of course, the scattering matrix is not directly useful for most calculations related to
experimental situations. The objects that are of direct importance are the correlation functions of local
fields. In particular, the two-point function,

〈vac|O1(x, t)O2(0, 0)|vac〉 ,

is a quantity often required, as it is related to the response function of the system at one point once
it is disturbed at another point. The calculation of two-point functions generated a lot of research in
integrable QFT. Probably the most fruitful idea is to start from a representation of the two-point function
coming from inserting a complete set of energy eigenstates between the operators:

〈vac|O1(x, t)O2(0, 0)|vac〉

=
∞∑

n=0

∑
a1,...,an

∫
dθ1 · · · dθn

(2π)nn!
〈vac|O1(x, t)|θ1, . . . , θn〉ina1,...,an a1,...,an

in〈θ1, . . . , θn|O2(0, 0)|vac〉

=
∞∑

n=0

∑
a1,...,an

∫
dθ1 · · · dθn

(2π)nn!
e−iEnt+ipnx〈vac|O1(0, 0)|θ1, . . . , θn〉ina1,...,an a1,...,an

in〈θ1, . . . , θn|O2(0, 0)|vac〉

where

En =
n∑

k=1

mak
cosh(θk) , pn =

n∑
k=1

mak
sinh(θk) .

This is the basis for the usual Källén-Lehmann spectral decomposition. The in-states are, as usual, wave
packets at minus infinite time with particles ordered from left to right by decreasing rapidity (so that
above, the leftmost particle is not necessarily θ1). Of course, we could have used as well the out basis.

27



In integrable systems, we know that states |θ1, . . . , θn〉 can be defined for any ordering of the rapidities
by asymptotic-like states that occur between two-body scattering events far apart from each other. When
θ1 > · · · > θn they agree with the in-state, when θ1 < · · · < θn they agree with the out-states, but for
other orderings, they just form a different basis for the Hilbert space. It is not hard to see, from the
unitarity of the scattering matrix written as (2.6), that we can just use all these bases and symmetrise
over the rapidities:

〈vac|O1(x, t)O2(0, 0)|vac〉

=
∞∑

n=0

∑
a1,...,an

∫
dθ1 · · · dθn

(2π)nn!
e−iEnt+ipnx〈vac|O1(0, 0)|θ1, . . . , θn〉a1,...,an a1,...,an〈θ1, . . . , θn|O2(0, 0)|vac〉 .

The matrix elements
FOa1,...,an

(θ1, . . . , θn) = 〈vac|O(0, 0)|θ1, . . . , θn〉a1,...,an

involved in this expression are called form factors. They are really a generalisation of the form factors
used in usual QFT, because of the intermediate bases that we have. The main point is that these matrix
elements are actually meromorphic in the rapidities. They have the following properties, which form
what is called a Riemann-Hilbert problem:

1. Meromorphicity: as functions of the variable θi − θj , for any i, j ∈ {1, . . . , n}, they are analytic
inside 0 < Im(θi − θj) < 2π except for simple poles;

2. Relativistic invariance:

FOa1,...,an
(θ1 + β, . . . , θn + β) = es(O)βFOa1,...,an

(θ1, . . . , θn)

where s(O) is the spin of O;

3. Generalized Watson’s theorem:

FOa1,...,aj ,aj+1,...,an
(θ1, . . . , θj , θj+1, . . . , θn) = Sbj ,bj+1

aj ,aj+1
(θj−θj+1)FOa1,...,bj+1,bj ,...,an

(θ1, . . . , θj+1, θj , . . . , θn)

4. Locality:

FOa1,...,an−1,an
(θ1, . . . , θn−1, θn + 2πi) = (−1)fOfΨe2πiω(O,Ψ)FOan,a1,...,an−1

(θn, θ1, . . . , θn−1)

where fO is 1 if O is fermionic, 0 if it is bosonic, Ψ is the fundamental field associated to the particle
an, and ω(O,Ψ) is the semi-locality index (or mutual locality index) of O with respect to Ψ (to be
defined below);

5. Kinematic pole: as function of the variable θn, there are poles at θj + iπ for j ∈ {1, . . . , n−1}, with
residue

iFOa1,...,an
(θ1, . . . , θn) ∼ Can,bj

Fa1,...,âj ,...,an−1(θ1, . . . , θ̂j , . . . , θn−1)
θn − θj − iπ

×(
δb1
a1
· · · δbj−1

aj−1
Sbj+1,cj

aj+1,aj
(θj+1 − θj)Sbj+2,cj+1

aj+2,cj
(θj+2 − θj) · · ·Sbn−1,bj

an−1,cn−3
(θn−1 − θj)−

(−1)fOfΨe2πiω(O,Ψ)δbn−1
an−1

· · · δbj+1
aj+1

Scj ,bj−1
aj ,aj−1

(θj − θj−1)Scj−1,bj−2
cj ,aj−2

(θj − θj−2) · · ·Sbj ,b1
c3,a1

(θj − θ1)
)

where a hat means omission of the argument.
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6. Bound-state poles: there are additional poles in the strip 0 < Im(θi − θj) < π if bound states are
present, and these are the only poles in that strip (I will not go into any detail about this).

I will not say anything about point 6, except that something similar occurs here as for the scattering
matrix when bound states are present. It is believe that the set of all solutions to points 1 to 6 form the set
of all local fields of an integrable QFT. We see, then, that the scattering matrix is enough to define local
fields (if we add the property of crossing symmetry, discussed below, in order to have matrix elements
with excited states on both sides), and eventually to evaluate their correlation funcitons (through the
form factor expansion).

Before going into an explanation of points 1 to 5, though, I have to introduce the concept of semi-
locality.

3.1 Local fields and semi-locality

As I said above, a local field O(x) is by definition a field that commutes with the Hamiltonian density
h(x) at space-like distances:

[h(x),O(x′)] = 0 (x 6= x′) .

I also introduced the concept of respective locality: a field O1(x) is local with respect to another field
O2(x) if they commute (for bosonic fields) or anti-commute (for fermionic fields) at space-like distances:

[O1(x),O2(x′)] = 0 or {O1(x),O2(x′)} = 0 (x 6= x′) .

In integrable QFT, a concept attached to local fields, as important as their anomalous dimension or
spin, is that of semi-locality index. Two fields O1,O2 are semi-local with respect to each other with index
ω1,2 if they satisfy

O1(x)O2(x′) = (−1)f1f2e−2πiω1,2Θ(x−x′)O2(x′)O1(x) (x 6= x′)

or if they satisfy
O1(x)O2(x′) = (−1)f1f2e2πiω1,2Θ(x′−x)O2(x′)O1(x) (x 6= x′)

where Θ(x− x′) is Heaviside’s step function (1 for x > x′, zero for x < x′) and (−1)f1f2 is (−1) if both
operators are fermionic, 1 otherwise.

Recall that in Feynmann’s path integral formulation of QFT, a product of operators inside a vacuum
expectation value 〈vac|O1(x1, t1) · · · On(xn, tn)|vac〉 has to be time-ordered t1 > · · · > tn in order to be
represented as the functional integral∫

[dΨ]eiS[Ψ]O1(x1, t1) · · · On(xn, tn) .

From this, it is clear that semi-locality just says that the following holds inside any functional integral
with other fields at times different from 0:

lim
ε→0+

[∫
[dΨ]eiS[Ψ](· · · O1(x, ε)O2(x′, 0) · · · )

]
= e±2πiω1,2Θ(±(x′−x)) lim

ε→0+

[∫
[dΨ]eiS[Ψ](· · · O1(x,−ε)O2(x′, 0) · · · )

]
(x 6= x′)
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where the signs ± are synchronized (and the equation holds for one choice of sign only), this being valid
for bosonic as well as fermionic fields.

Recall also that in Feynmann’s path integral formalism, it is necessary to put a slight imaginary
part to the time variables. This means that the equation above will be valid also when the small real
parameter ε is replaced by −iε in the arguments of the fields, the correlation functions being defined by
analytic continuation to imaginary time.

lim
ε→0+

[∫
[dΨ]eiS[Ψ](· · · O1(x,−iε)O2(x′, 0) · · · )

]
(3.1)

= e±2πiω1,2Θ(±(x′−x)) lim
ε→0+

[∫
[dΨ]eiS[Ψ](· · · O1(x,−iε)O2(x′, 0) · · · )

]
(x 6= x′)

Then, since with an imaginary time the distance between two operators is always space-like, we can
re-formulate semi-locality in a much clearer way. Consider the functional integral

F (x, t) =
∫

[dΨ]eiS[Ψ](· · · O1(x, t)O2(0, 0) · · · )

as a function of x and t, and analytically continue it in the variable t from a space-like region |x| > |t|
to purely imaginary values of time t = −iτ , real τ . The action S[Ψ] (or its analytic continuation to
imaginary times) gives rise to a natural notion of local real displacement of fields in x and τ through the
equations of motion. Then, semi-locality says that the function F “locally displaced” from a point (x, τ)
around the point x = 0, τ = 0 counterclockwise all the way back to x, τ gives rise to a phase:

F (eiαz, e−iαz̄)
∣∣∣
α:0 7→2π

= e2πiω1,2F (z, z̄)

where we use the variables z = x+ iτ, z̄ = x− iτ . To be more precise, the function F (z, z̄) in fact should
have a cut on z ∈ R+ or on z ∈ R− according to (3.1). But “local displacements” means that we consider
its continuation through that cut obtained from the (finite) limit as we approach the cut of its normal
derivative (given by the equation of motion); in other words, we consider its value on a covering of the
Euclidean plane with a branch point at (0, 0).

How can such fields exist in a model? Not all models possess fields that exhibit the property of semi-
locality. Important cases where such fields exist are when the model has a global U(1) (or a subgroup
thereof) symmetry. In order to understand, it is simpler to go to the Euclidean theory: consider the
analytic continuation to imaginary times as described above for all fields in a correlation function. Then,
correlation functions are described by the functional integral (we denote OE(x, τ) the fields in Euclidean
theory corresponding to O(x,−iτ) understood by analytic continuation as explained above, and we denote
by SE the Euclidean action obtained from analytic continuation)∫

[dΨ]e−SE [Ψ]OE
1 (x1, τ1) · · · OE

n (xn, τn) .

Suppose the action SE [Ψ] has a U(1) symmetry; take for instance Ψ to be a complex boson, the U(1)
symmetry acting by Ψ 7→ eiαΨ. Consider a field OE , called twist field (associated to the U(1) symmetry);
it simply inserts of a source of magnetic charge, dual to the electric charge associated to the U(1)
symmetry. It is defined as follows (here we must imagine that there is another magnetic charge at infinity;
it doesn’t matter because this other field at infinity really just affects the normalisation of correlation
functions):∫

[dΨ]e−SE [Ψ]OE(0, 0)OE
1 (x1, τ1) · · · OE

n (xn, τn) =
∫
C(0,0)

[dΨ]e−SE [Ψ]OE
1 (x1, τ1) · · · OE

n (xn, τn) (3.2)
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where C(0, 0) is a quasi-periodicity condition on the fields Ψ in the functional integral, stating that

C(0, 0) :

{
Ψ(x, 0−) = e2πiωΨ(x, 0+) (x > 0)
Ψ(x, 0−) = Ψ(x, 0+) (x < 0) .

(3.3)

More precisely, the functional integral is defined by taking away the ray x > 0, evaluating the functional
integral with fixed boundary conditions on each side of the cut with (3.3) satisfied, then integrating over
all the configurations on each sides of the cut keeping (3.3) satisfied. It is obvious that the field OE thus
defined has semi-locality index ω with respect to the fundamental field Ψ, and semi-locality index 0 with
respect to any field that is U(1)-invariant. Also, the field OE is a local field since the Hamiltonian density
h(x) is certainly U(1)-invariant, hence OE is local with respect to it.

A consequence of it being a local field is that the functional integral is in fact independent of the
shape of the cut from 0 to ∞ on each side of which the quasi-periodicity condition is imposed, up to a
U(1) transformation of the fields that the cut may cross while moving. Indeed, consider cuting not only
on A : x > 0, but also on a path B starting and ending on the line x > 0, isolating a region bounded by
B and by the segment C ⊂ A. Fix configurations along all these cuts with the quasi-periodicity condition
(3.3) across A and with a condition of continuity across B. Integrating over all configurations on these
cuts certainly gives back the functional integral (3.2) (puting the cut at B with continuity condition across
it and suming over the configurations on it is like puting a complete set of states, hence does not change
the path integral). But, since one region is isolated, we can make a U(1) transformation in that region,
which preserves the action in that region and change the fixed boundary conditions in a simple way: the
new conditions across the cut B are quasiperiodicity conditions similar to (3.3), and the condition across
C is continuity. Integrating over all configurations on the cuts now gives a functional integral with a
modified cut, B ∪ (A \ C), across which the quasi-periodicity condition holds. The only difference is in
the transformation of the fields present inside the isolated region, which shows the assertion.

Further insight can be gained into such fields making a change of variable in order to make the
cut disappear. Indeed, consider the path integral on the right-hand side of (3.2) and apply a U(1)
transformation on the fields inside a (infinite) triangular region bounded by A : x > 0, by B : z =
eiαl, l > 0 and by infinity (the triangular region is, for instance, above the cut A). Since this is a symmetry
transformation, the action is invariant under this transformation up to three changes: a contribution on
the boundary B of the triangle coming from the kinetic (derivative) term in the action, the modification
of the boundary condition just above A, and the U(1) transformations of fields that may be inside this
triangle. We can choose the U(1) transformation in such a way that the boundary condition just above
A is equal to that just below it. Then, the path integral becomes a usual path integral without cut, but
with insertion of the contribution of the action along B:

OE(0, 0) = e2πiω
R

B
dxµjνεµ,ν (3.4)

where we denoted the contribution as an integration along B of the component of a current perpendicular
to B (obviously, here we would need an appropriate regularisation of the exponential in order to define
this field properly). We showed that by moving B through fields they get U(1)-transformed. Moving B
can be done here simply by puting the exponential of the integral of the current, eiω

R
L

dxµjνεµ,ν , along
a loop L that shares a border with a segment of B and such that, on this segment, the integral goes in
opposite direction as the integral in eiω

R
B

dxµjνεµ,ν above. Hence, we find that the insertion of

e2πiω
R

L
dxµjνεµ,ν
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has the effect of a U(1) transformation of the fields surrounded by L. This means that the current jν is
nothing else than the Noether current associated to the U(1) invariance (and the derivation above may
be seen as a way of defining this current). This makes it even more clear that the field is like the insertion
of a magnetic charge.

Note that it is simple to extend this construction to twist fields associated to any global symmetry of
the model. The form factor equations, however, have not been derived for such fields yet.

An example of such a twist field is the field in the free massive Majorana theory corresponding to the
spin variable in the Ising model. The Majorana theory can be defined by its Euclidean action

SE [ψ, ψ̄] = −i
∫
d2x

[
ψ∂̄ψ − ψ̄∂ψ̄ + 2mψ̄ψ

]
where ∂ ≡ (1/2)(∂/∂x − i∂/∂τ) and ∂̄ ≡ (1/2)(∂/∂x + i∂/∂τ) . The fermion fields ψ, ψ̄ are both real
and are governed by the equations of motion

∂̄ψ =
m

2
ψ̄ , ∂ψ̄ =

m

2
ψ .

This means that any correlation function 〈vac|O1(x1, τ1) · · · On(xn, τn)ψ(x, τ)|vac〉 will satisfy, as function
of x and τ , the equation of motion ∂2

x + ∂2
τ −m2 = 0.

The action has the Z2 symmetry ψ 7→ −ψ, ψ̄ 7→ −ψ̄. We can then define a twist field σ associated to
this symmetry as above. In the free-field context, the definition means that the correlation function

〈vac|σ(0, 0)ψ(x, τ)ψ(x′, τ ′)|vac〉

(we put two fermion fields so that it is non-zero) is, as function of both x, τ and x′, τ ′, a solution to
the equation of motion on a double covering of the Euclidean plane with branch point at 0, 0, and with
quasi-periodicity condition according to which it gains a sign when going once around 0, 0. Along with
the condition that as x, τ go to 0, 0, we get the least singular behavior, the solution is unique up to
a normalisation. The condition on the least singular behavior comes from the fact that many fields,
beside the twist fields introduced above, have a the same twist-field effect: their descendants under
the free fermion operator algebra. But they have higher scaling dimension, so that the twist field as
defined above is uniquely characterised by further imposing the condition of least singular behavior on
the correlation functions. The field σ corresponds to the scaling limit of the spin variable in the lattice
Ising model near criticality.

3.2 Explanation of the form factor properties

3.2.1 Analyticity and Watson’s theorem

Properties 2 is obvious from relativistic invariance. Property 3 is also obvious from our definition of
the states |θ1, . . . , θn〉a1,...,an

as, generically, intermediate “asymptotic-like” states. However, the real
statement of Watson’s theorem, which is not obvious, is a part of Property 1: the fact that the regions
θj − θj+1 > 0 and θj − θj+1 < 0 are analytic continuation of one another through at least a small strip
containing the real axis. In the two-particle case, this is consequence of general (assumed) analytical
properties of QFT. An heuristic argument can be given on the lines of the argument given above for
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understanding (2.8). Consider the path-integral formulation of the following matrix element, with θ1 > θ2:

a1,a2
out〈θ1, θ2|O|vac〉 =

∫
Ψ=

P
k Aak

eiEkt−ipkx (t→+∞)

[dΨ]eiS[Ψ] .

Here, O is a local field at the point 0, 0. Again, the sum specifying the asymptotic conditions on the
fundamental field has to be understood as giving the spacetime-dependent phase factors for wave packets
ordered, on the space slice t = −∞, from left to right with increasing index k. Taking the complex
conjugate gives

〈vac|O|θ1, θ2〉out
a1,a2

=
∫

Ψ=
P

k Aak
e−iEkt+ipkx (t→+∞)

[dΨ]e−iS[Ψ]

and time-reversal invariance leads to

〈vac|O|θ1, θ2〉out
a1,a2

=
∫

Ψ=
P

k Aak
eiEkt+ipkx (t→−∞)

[dΨ]eiS[Ψ]

This is just the matrix element 〈|O|θ′1, θ′2〉ina1,a2
analytically continued to from θ′1 > θ′2 to θ′1 = −θ1, θ′2 =

−θ2 (that is, the main assumption here is that the path integral with wave-packet asymptotic prescription
in the “wrong order” is just the analytic continuation of that in the “right order”). In other words, if
there are no particle production (as in integrable systems, or else if the energies of the particles are small
enough), then we have, for θ1 > θ2,

〈vac|O|θ1, θ2〉ina1,a2
= Sb1,b2

a1,a2
(θ1 − θ2)〈vac|O|θ′2, θ′1〉ina2,a1

∣∣∣
θ′2 7→θ2,θ′1 7→θ1

where the analytic continuation is now from θ′2 > θ′1. This is Watson’s theorem

FOa1,a2
(θ1, θ2) = Sb1,b2

a1,a2
(θ1 − θ2)FOb2,b1(θ2, θ1)

in the 2-particle case; that is, the analytic continuation agrees with our choice of basis of asymptotic
states. This was derived quite generally, but in integrable systems we have the intermediate basis,
where processes occur 2-particle by 2-particle. Although the derivation above would not work as is, the
important point is that if we change the rapidities in such a way that two wave packets, first in the
correct order for an in-state, become colinear and then are in the wrong order, doing that by analytic
continuation, then we get a factor of the scattering matrix associated to this 2-particle process. We can
do that independently for every two-particle processes in our intermediate states of integrable systems,
and this gives generalized Watson’s theorem.

Another fact which is not obvious is the other part of Property 1: the fact that only simple poles
may occur all the way up to the line of imaginary part 2π. This is called the “maximal analyticity
assumption”. That no other singularities occur all the way up to the line of imaginary part π is from
standard principles of QFT, but the maximal analyticity assumption is really just an assumption, and
for integrable models, the current way of thinking is to take this for granted, and to verify that the form
factors obtained under this assumption (and the other form factor properties) give rise to local fields of
the theory.

3.2.2 Crossing symmetry and locality property

For explaining Points 4 and 5, it will be useful to have in mind particles that possess a U(1) charge, so
that we consider Ψ, the fundamental field associated to a particle, to be a complex field. We will take O
to be the associated twist field with semi-locality index ω defined as above.
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The locality property, point 4, is essentially a consequence of two applications of crossing symmetry.

Crossing symmetry, a general property of QFT, stipulates that analytically continuing the rapidity
variable θn to θn + iπ − i0+ in the matrix element

〈vac|O|θ1, . . . , θn−1, θn〉(in)
a1,...,an−1,an

,

with initially θ1 > · · · > θn, gives the matrix element

ān

out〈θn − i0+|O|θ1, . . . , θn−1〉(in)
a1,...,an−1

understood as analytic continuation again. The latter matrix element, without the −i0+, is really a
distribution for real rapidities. This distribution, in terms of θn, has a part supported at other rapidities
θ1, . . . , θn−1, and a part supported on the complement on R. Essentially, the part supported on the points
θ1, . . . , θn−1 is interpreted as coming from particles going through from in- to out-state without interacting
with the operator. The analytic continuation above, with the −i0+, is the analytic continuation of the
part supported away from these points.

Crossing symmetry can be understood by slowly bringing the wave packet associated to θn around the
operator O counterclockwise from the in-state to the out-state. This motion is implemented by taking
first θn to −∞, then adding iπ/2, then bringing its real part to +∞, then adding again iπ/2 and finally
bringing its real part back to its initial value. In this final motion, we need to avoid the position of
the rapidities θ1, . . . , θn, by keeping a slight negative imaginary part. Straightening the path (under the
assumption that there are no branch points in the rapidity plane) gives the statement above. With the
operator O being a twist field, we need, for this to be valid, to take the cut to its left (although the shape
of the cut does not affect the correlation functions, it affects some of its matrix elements on the Hilbert
space), so that the wave packet does not cross it.

Moving the wave packet from an out position to an in position, a different expression of crossing
symmetry allows us to start from

ān

out〈θ1 + i0+|O|θ2, . . . , θn〉(in)
a2,...,a1

with θ1 > · · · > θn and analytically continue to θ1 7→ θ1 + iπ, giving back

〈vac|O|θ1, θ2, . . . , θn−1, θn〉(in)
a1,a2,...,an

.

In doing so, however, the wave packet will need to cross the cut of the operator O if it is semi-local with
respect to the associated fundamental field (we assume throughout that this cut is on the left). This
gives a factor with the semi-locality index. In fact, in a more precise treatment of this, the factor of
semi-locality would come from commuting mutually semi-local operators, and it is always accompanied
by a factor (−1)fOfΨ 4.

With an appropriate analyticity assumption, included in the assumption of maximal analyticity, the
two values

ān

out〈θ1 ± i0+|O|θ2, . . . , θn〉(in)
a2,...,a1

are analytic continuation of each other everywhere on θ1 ∈ [θ2, θn] (no cut occurs, or at least we can
correctly go around it). Then, we can apply twice crossing symmetry and we find Point 4 with the

4That this factor appears in doing the latter crossing θ1 + i0+ 7→ θ1 + iπ or in doing the former one θn 7→ θn + iπ− i0+

is really a matter of definition of the phase of the asymptotic states (which is not fixed by their normalisation).
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understanding that the analytic continuation of θn is from a value with θ1 > · · · > θn towards θn + 2πi
with θn > θ1 > · · · > θn−1. Since in integrable models the form factors are meromorphic, this can be
extended to the real part of θn staying the same.

3.2.3 Kinematic pole

The kinematic pole, point 5, is, in its simplest form, a consequence of general principles of QFT (although
one needs the analyticity assumption of the paragraph above). Consider the two-particle case:

iFOa1,a2
(θ1, θ2) ∼ Ca2,a1

1− e2πiω

θ2 − θ1 − iπ

where we used the fact that (−1)fOfΨ = 1 (because, even if Ψ is fermionic, in order to have a non-zero
two-particle form factor, O must bosonic: fO = 0). In order to derive this equation, we will look at the
behavior around and at θ1 = θ2 of the different but related matrix element

gā2,a1(θ2, θ1) = 〈vac|Aā2(θ2)
(out)OA†a1

(θ1)(in)|vac〉 .

As we said above, it is generically not an analytical function, but rather a distribution. The part of the
distribution supported away from θ1 = θ2 has an analytic continuation that may have a singularity at this
point. The part supported at θ1 = θ2 comes from particles going through from in- to out-state without
interacting with the operator, and the singularity of the part supported away comes from particles being
affected only by the cut giving the semi-locality of the operator O.

We could write this matrix element using the definition (2.1) of the operators A(θ)(in,out). Instead,
we will use what is sometimes called the “extrapolating fields”:

gā2,a1(θ2, θ1) = 〈vac|
∫
dx2 e

−ip2x2

(
∂tΨ̃ā2(x2, 0)(out) − iE2Ψ̃ā2(x2, 0)(out)

)
O ×

×
∫
dx1 e

ip1x1

(
∂tΨ̃†

a1
(x1, 0)(in) + iE1Ψ̃†

a1
(x1, 0)(in)

)
|vac〉 (3.5)

where, as usual, p1 = m sinh(θ1), E1 = m cosh(θ1), etc. The extrapolating fields are defined by

Ψ̃a(x, t)(in/out) =
1

4iπ

∫
dθ
[
eip(θ)x−iE(θ)tAa(θ)(in/out) + e−ip(θ)x+iE(θ)tA†ā(θ)(in/out)

]
.

These fields are not generically local, and very different from the local fundamental field associated to
the particle a, which would have the form, in terms of in operators,

Ψa(x, t) =
∫
dθ

[
eip(θ)x

(
e−iE(θ)tAa(θ)(in) +

+
∫
dθ1dθ2δ(p(θ)− p1 − p2)e−i(E1+E2)tua1,a2

a (θ1, θ2)Aa1(θ1)
(in)Aa2(θ2)

(in) +

+
∫
dθ1dθ2δ(p(θ) + p1 − p2)e−i(−E1+E2)tva1,a2

a (θ1, θ2)A
†
ā1

(θ1)(in)Aa2(θ2)
(in) +

+
∫
dθ1dθ2δ(p(θ) + p1 + p2)e−i(−E1−E2)twa1,a2

a (θ1, θ2)A
†
ā1

(θ1)(in)A†ā2
(θ2)(in) + · · ·

)
+

+e−ip(θ)x
(
eiE(θ)tA†ā(θ)(in) + · · ·

)]
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and a similar expression exists in terms of out operators (only in free theories are extrapolating fields
equal to fundamental fields). Note that the particle types involved on the right-hand side must be such
that the U(1) charge is the same on both sides. Inverting, one would obtain

Ψ̃a(x, t) = Ψa(x, t) +
∫
dx1dx2 [Ka1,a2

a (x, x1, x2)Ψa1(x1, t)Ψa2(x2, t) + · · ·]

for some Ka1,a2
a (x, x1, x2), where the · · · mean terms of similar type involving one time-derivative of the

fields, complex conjugate fields, and more and more factors. Again, on the right-hand side, the U(1) charge
is the same as that of the left-hand side. The important point is that the quantities Ka1,a2

a (x, x1, x2)
vanish exponentially fast as x1 or x2 are brought far from x:

Ka1,a2
a (x, x1, x2) ∝ e−m|x−x1| (|x− x1| → ∞) , Ka1,a2

a (x, x1, x2) ∝ e−m|x−x2| (|x− x2| → ∞) .

That is, although the extrapolating fields are not strictly local, they are “of finite extent”, in the sense
that they have tails that decrease exponentially.

Now, the behavior near and at θ1 = θ2, for finite p1 + p2, is obtained from (3.5) by looking at the
region |x1 + x2| → ∞ with |x1 − x2| finite. Since the extrapolating fields are then very far from the field
O and since they are of finite extent, the resulting correlation function factorizes:

gā2,a1(θ2, θ1) ∼ 〈vac|
∫
dx2 e

−ip2x2e2πiωΘ(−x1)
(
∂tΨ̃ā2(x2, 0)(out) − iE2Ψ̃ā2(x2, 0)(out)

)
×

×
∫
dx1 e

ip1x1

(
∂tΨ̃†

a1
(x1, 0)(in) + iE1Ψ̃†

a1
(x1, 0)(in)

)
|vac〉 ×

〈vac|O|vac〉 .

The operations involved in factorizing are as follows: we first bring the operator at x1 just to the left of O
inside the vacuum expectation value in (3.5), which brings a factor of semi-locality since the extrapolating
fields are for from the point x = 0, are of finite extent and have a well-defined U(1) charge; then we
factorize the correlation function as above, using the fact that the extrapolating fields have finite extent.
Then, we can use translation invariance and the change of variable x2 7→ x2 + x1 in order to find

gā2,a1(θ2, θ1) ∼
∫
dx1e

ix1(p1−p2)e2πiωΘ(−x1)

∫
dx2 e

−ip2x2〈vac|
(
∂tΨ̃ā2(x2, 0)(out) − iE2Ψ̃ā2(x2, 0)(out)

)
×

×
(
∂tΨ̃†

a1
(0, 0)(in) + iE1Ψ̃†

a1
(0, 0)(in)

)
|vac〉 〈vac|O|vac〉 .

The integral over x1 can be evaluated using the distributional identities∫
dx eipx sign(x) = 2iP

(
1
p

)
,

∫
dx eipx = 2πδ(p) (3.6)

where P means principal value (that is, under integration, we cut a region of length ε symmetricaly
distributed around the pole at p = 0 and evaluate the limit ε→ 0 after integrating). This gives∫

dx1e
ix1(p1−p2)e2πiωΘ(−x1) =

(
1− e2πiω

)
iP
(

1
p1 − p2

)
+
(
1 + e2πiω

)
πδ(p1 − p2) .

The integral over x2 can be evaluated by using the explicit expression for the extrapolating fields. A
shorter way to evaluate it at θ1 = θ2 (which is the only point we need) is to realize that we could have
done the same calculation with O being just the identity operator 1, with ω = 0, and that this should
give 2πδ(θ1 − θ2)δa1,ā2 , hence∫
dx2 e

−ip2x2〈vac|
(
∂tΨ̃ā2(x2, 0)(out) − iE2Ψ̃ā2(x2, 0)(out)

)(
∂tΨ̃†

a1
(0, 0)(in) + iE2Ψ̃†

a1
(0, 0)(in)

)
|vac〉 = E2δa1,ā2 .
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Puting all that together, we find

gā2,a1(θ2, θ1) ∼
[(

1− e2πiω
)
iP
(

1
θ1 − θ2

)
+
(
1 + e2πiω

)
πδ(θ1 − θ2)

]
Ca1,a2

where we used the fact that δa1,ā2 just gives the matrix element Ca1,a2 of the conjugation matrix.

Now, the function gā2,a1(θ2, θ1) is simply related to the form factor FOa1,a2
(θ1, θ2) by crossing symmetry:

FOa1,a2
(θ1, θ2) = gā2,a1(θ2 − iπ, θ1) where we analytically continue only the part

(
1− e2πiω

)
iP
(

1
θ1−θ2

)
.

This gives the kinematical residue equation in the 2-particle case.

One can try to do the many-particle case in a similar way still for non-integrable models, by considering
the matrix element

gān,a1,a2,...,an−1(θn, θ1, θ2, . . . , θn−1) = 〈vac|Aān
(θn)(out)OA†a1

(θ1)(in)A†a2
(θ2)(in) · · ·A†an−1

(θn−1)(in)|vac〉
(3.7)

with θ1 > · · · > θn−1 and writing the asymptotic state operators in terms of extrapolating fields integrated
over their positions x1, . . . , xn. There is a subtlety, however, that lies in using the identities (3.6). They
should really be understood as conditionally convergent integral, made convergent by giving a small x-
dependent imaginary part to p, positive for x > 0 and negative for x < 0. This means that when we look
at the region where xn is very positive, we will really be considering the matrix element

xn � m−1 : gān,a1,a2,...,an−1(θn − i0+, θ1, θ2, θn−1)

whereas when we look at the region where both xn is very negative, we will be considering the matrix
element

xn � −m−1 : gān,a1,a2,...,an−1(θn + i0+, θ1, θ2, θn−1) .

The first matrix element is related by crossing symmetry to the form factor FOa1,...,an
(θ1, . . . , θn) for

θn > θn−1 and the second is related to FOan,a1,...,an−1
(θn, θ1, . . . , θn−1) for θn < θ1. Hence, the two regions

of xn will give us contributions to poles of these two different functions of θn at different points: the first
at θn−1 + iπ, the second at θ1 − iπ. The second can also be seen as a pole at θ1 + iπ of the analytic
continuation of the form factor FOa1,...,an

(θ1, . . . , θn) from the region θn > θn−1, under the appropriate
analyticity assumption (included in the maximal analyticity assumption). It is really from this and the
fact that θn−1 = θ1 in the two-particle case that we obtained the two-particle result above.

The residue of these two contributions to poles can be evaluated as above for the two-particle case. We
get a n−2-particle form factor, times an appropriate sign and semi-locality factor. These can be evaluated
as follows. In the first case (xn positive), we will have to bring the right-most operators Ψ̃in

an−1
(xn−1)

almost all the way to the left, just next to Ψ̃out
ān

(xn), on its right, before doing the factorisation. If both O
and the particle ān are fermionic, then the particle an−1 will have to be fermionic as well and the operators
Ψ̃an−1(xn−1) will cross an odd number of fermionic extrapolating fields as well as the operator O, so that
no sign will be gained in this process. A little thought on similar lines shows that no matter if O or an

are bosonic or fermionic, no sign will be gained. In the second case, (xn negative) the extrapolating field
associated to a1, which will have to be of the same statistics as ān, will only have to cross the operator
O, so that we will have a factor (−1)fOfΨan . Moreover, by arguments similar to those above for the
two-particle case, we will have a factor of semi-locality only for xn negative, that is, in the second case.

We still do not have the full information about the poles, because the two contributions are for
poles at different points. But in integrable models, we can also calculate the part of the xn and xn−1
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integrals for very negative xn and xn−1 in the matrix element gān,a1,a2,...,an−1(θn, θ1, θ2, . . . , θn−1) with
θ1 > . . . > θn−1 > θn written as integrations over extrapolating fields from (3.7). Let us divide this
matrix element into two part: one that contains the xn−1-integral from −∞ up to some value X, the
other that goes from X to ∞:

gān,a1,...,an−1(θn, θ1, . . . , θn−1) = g
(−)
ān,a1,...,an−1

(θn, θ1, . . . , θn−1) + g
(+)
ān,a1,...,an−1

(θn, θ1, . . . , θn−1) .

The latter part gives rise to a contribution to the pole at θn = θn−1 that we already know how to
calculate, but the former part also gives a contribution, which we do not know yet how to calculate.
However, we know how to write this matrix element as an analytic continuation of the matrix element
gān,an−1,a1,...,an−2(θn, θn−1, θ1, . . . , θn−2) with θn−1 > θ1 > · · · > θn−2, using multiple applications of
generalized Watson’s theorem, symbolically:

gān,a1,...,an−1(θn, θ1, . . . , θn−1) =
(∏

S
)
gān,an−1,a1,...,an−2(θn, θn−1, θ1, . . . , θn−2) .

This analytic continuation does not exactly hold separately for the positive-xn−1 and the negative-xn−1

parts; for instance:

g
(−)
ān,a1,...,an−1

(θn, θ1, . . . , θn−1) =
(∏

S
)
g
(−)
ān,an−1,a1,...,an−2

(θn, θn−1, θ1, . . . , θn−2) + ∆

where ∆ is a correction. However, we can evaluate the residue of the pole of the first term on the
right-hand side at θn = θn−1 and we find that it is independent of X. Hence, since the correction ∆
vanishes as X → ∞, this gives the full residue of that pole of the left-hand side for all finite X. The
contributions at xn, xn−1 very positive and at xn, xn−1 very negative are the only two contributions to
the pole at θn = θn−1 of gān,a1,a2,...,an−1(θn, θ1, θ2, . . . , θn−1), hence we have the full residue of the pole
at θn = θn−1 + iπ of the form factor FOa1,...,an

(θ1, . . . , θn), and we have shown point 5.

Note that a similar argument also holds for the part of gān,a1,a2,...,an−1(θn, θ1, θ2, . . . , θn−1) supported
at θn = θn−1. In general, we can write

gān,a1,a2,...,an−1(θn, θ1, θ2, . . . , θn−1) =
(

−iR
θn − θn−1 + i0+

+ 2πδ(θn − θn−1)
)
FOa1,...,an−2

(θ1, . . . , θn−2)+. . .

where . . . are convergent at θn = θn−1 and R is as calculated above. This should be understood using

1
θ + i0+

= P
(

1
θ

)
− iπδ(θ) .
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